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 A B S T R A C T

Water table depth is the primary consideration during peatland rewetting, as a post-industrial peatland 
transitions from a degraded system with bare peat surfaces to a natural one. For rewetting to be successful, 
water table depth should be maintained in the upper 0.2 m of the soil to promote carbon sequestration 
while minimising net greenhouse gas emissions. There is evidence that satellite remote sensing techniques 
may be effective tools at monitoring water table depth. However, these techniques have been seldom used on 
degraded bare peat bogs, despite their excellent potential as monitoring tools during the restoration process. 
The aims of this paper are to (1) systematically test the relationship between radar backscatter and water 
table depth (2) compare decision tree regression algorithms to evaluate the potential of multi-sensor remote 
sensing in peatland management, and (3) make novel estimations of site-wide water table depth using a multi-
sensor approach. This paper applies multi-sensor machine learning techniques to two post-industrial harvesting 
degraded peatlands, which are currently undergoing rewetting. Combined, these peatlands have nearly three 
years (2021–2023) of water table measurements, from over 50 piezometers. These data were used to train 
machine learning models, resulting in 𝑅2 values ranging from 0.72 to 0.78, and RMSE values of 0.14 m and 
0.12 m. Significant variation in water level throughout the year was observed, suggesting that the ability 
for a peatland to successfully sequester carbon may be temporally variable. With this study, we provide a 
timely assessment of restoration efforts at anthropologically degraded bare peat peatlands. This work proves 
the utility of remote sensing techniques in tracking restoration progress, and may inform future strategies in 
peatland restoration, rewetting, and monitoring.
1. Introduction

Wetland ecosystems cover approximately 5%–8% of Earth’s land 
surface (Mitsch and Gosselink, 2007), and play a major role in the 
global greenhouse gas (GHG) cycle, exchanging significant amounts 
of carbon dioxide (CO2) and methane (CH4) (Evans et al., 2021). 
However, though effective CO2 sinks, industrial peat-harvesting (pri-
marily on raised peatlands) and burning has meant that these peatlands 
have recently acted as sources of GHG (Aitova et al., 2022). In their 
post-industrial ‘‘degraded’’ state, these peatlands are characterised by 
bare peat surfaces, low vegetation cover, and extensive groundwater 
drainage systems, but maintain the potential to be restored to a natural 
state (Mackin et al., 2017). ‘‘Re-wetting’’ is the process of undoing these 
drainage systems, so that the underlying water table depth (WTD) may 
be sufficiently raised. There are several strategies to rewet degraded 
bare peat peatlands, with the principle aim of maintaining WTD and 
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creating conditions compatible with Sphagnum growth (Mackin et al., 
2017). Peat dams are routinely installed within excavated drains to 
raise the surrounding WTD (Worrall et al., 2007). Peat embankments 
(bunds) may be constructed to maintain standing water (Mackin et al., 
2017). In cases where there has been extensive vegetation removal, in-
troducing Sphagnum may initiate peat-formation — though this requires 
suitable pre-existing hydrological conditions (Quinty and Rochefort, 
2003).

By rewetting and raising the WTD, peat regeneration may begin 
as peatlands revegetate (Price et al., 2023). Sphagnum moss and other 
vegetation grows on the peat surface and access moisture from the 
underlying water table through capillary action (Price et al., 2023). Re-
gan et al. (2020) show that optimal WTD must be maintained within 
−0.2 m of the peat surface during restoration. Evans et al. (2021) 
further constrain this optimal range, finding that WTD between −0.05 
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Table 1
Previous studies comparing backscatter intensity and ground water, the relationship strength is measured by either Pearson’s correlation coefficient (R), Spearman’s correlation 
coefficient (𝜌), or the R2 value.a, b Relationship strength value given for Isoaho et al. (2024) and Räsänen et al. (2022) differ from those in Section 1.2, as here they refer exclusively 
to the relationship between backscatter intensity and ground water, rather than between multi-sensor indices and ground water.
 Author Mission Band–Polarisation Relationship strength Country Ground type  
 Asmuß et al. (2019) Sentinel-1 C–VV/VH 𝜌: 0.45 Germany Temperate Peatland  
 Bechtold et al. (2018) ENVISAT C–VV R: 0.33–0.54 Germany Drained–Natural Peatland  
 Hrysiewicz et al. (2023) Sentinel-1 C–VV/VH R: 0.17–0.76 Ireland Vegetated Raised Bog  
 Isoaho et al. (2024)a Sentinel-1 C–VV/VH R2: 0.32 Finland Restored Boreal Peatland  
 Kasischke et al. (2003) ERS-2 C–VV R2: 0.05–0.78 USA Florida Everglades  
 Kasischke et al. (2009) ERS-2 C–VV R: −0.84–0.74 USA Boreal Wetland  
 Kim et al. (2017) Radarsat-1/ALOS C/L–HH/HV R2: 0.67–0.76 USA Great Dismal Swamp  
 Lang and Kasischke (2008) ENVISAT C–HH/VV R2: 0.19–0.5 USA Forested Wetland  
 Lees et al. (2021) Sentinel-1 C–VV R: 0.77 UK Vegetated Peatland  
 Millard and Richardson (2018) Radarsat-2 C–HH/HV/VV R2: 0.11–0.66 Canada Mixed-Vegetation Peatland 
 Räsänen et al. (2022)b Sentinel-1 C–VV/VH R2: 0.21–0.34 Finland Mixed-Vegetation Peatland 
 Sass and Creed (2008) ERS C–VV R2: 0.45 Canada Boreal Peatland  
 Zhang et al. (2022) Sentinel-1 C–VV/VH R2: >0.5 Florida Florida Everglades  
to −0.13 m results in net GHG sequestration (CO2 and CH4). WTD 
outside of this range results in net GHG emissions (Evans et al., 2021). 
Therefore, water table monitoring and maintenance is of fundamental 
importance during the restoration process. Typically, this is carried 
out using piezometers to take in-situ measurements (Monteverde et al., 
2022), though these can be laborious and time-consuming to install and 
maintain, and they only provide measurements of WTD near the in-
strument. Additionally, peatlands may be challenging environments to 
perform ground-based analyses. They can have little to no established 
pathways, and may contain waterlogged soil that is difficult to traverse, 
either on-foot or by machinery. As such, in-situ measurements may 
be complemented by satellite-based remote sensing, which facilitates 
site-wide observation, at various spatial resolutions at regular temporal 
intervals (Bhatnagar et al., 2020; Hrysiewicz et al., 2023). However, 
current Synthetic Aperture Radar (SAR) and optical satellite missions 
do not allow for direct measurement of WTD. Some studies have 
identified correlations between radar backscatter intensity and WTD 
(e.g. Bechtold et al. (2018) and Lees et al. (2021)), while others have 
used multi-sensor observations and machine learning techniques to 
estimate site-wide WTD (Räsänen et al., 2022; Isoaho et al., 2024). 
These multi-sensor techniques show good potential as a predictive 
tool to complement piezometer measurements. However, to date, such 
methods have not been applied to monitor the restoration of extraction-
driven degraded bare peat peatlands, and their potential in this context 
is not understood. Therefore, this paper aims to apply multi-sensor 
(Sentinel-1 and Sentinel-2) machine learning techniques to degraded 
bare peat peatlands, to estimate site-wide WTD. As peatland restoration 
measures are introduced nationally and internationally across Europe, 
measuring WTD is of critical importance to assess the restoration 
progress. The approach presented here allows for WTD monitoring at a 
large scale, allowing for continuous monitoring of peatland rewetting 
strategies.

1.1. Monitoring peatland water table depth using synthetic aperture radar

The application of Synthetic Aperture Radar in environmental sci-
ence, and peatland monitoring in particular, is a burgeoning field. 
The wealth of data provided by Sentinel-1 allows for observation of 
entire peatlands at regular intervals (6–12 days, depending on the 
number of satellites in constellation). SAR platforms allow for all-
weather, year-round imaging of the Earth’s surface. Sentinel-1 transmits 
in the C-band, in both Vertical-Vertical (VV) and Vertical-Horizontal 
(VH) polarisations. Following an acquisition, the radar information is 
presented as a Single Look Complex (SLC) image. SLC pixels comprise 
complex numbers of radar phase and intensity. The radar phase is 
a measure of the two-way distance between the satellite and ground 
surface, while intensity is a measure of the strength of the returned 
signal. Radar phase has been used in peatlands to measure ‘‘bog breath-
ing’’ (cycles of uplift and subsidence driven by seasonal fluctuations in 
2 
soil moisture) (Hrysiewicz et al., 2023, 2024), while the relationship 
between backscatter intensity and soil moisture has been observed by 
several satellites (ENVISAT, ERS, Sentinel-1, ALOS, Radarsat) in various 
polarisations (VV, VH, HH, HV), across several wetland environments 
(Table  1). Correlation coefficients have varied from 0.17–0.77, while 
R2 (coefficient of determination) values have varied between 0.05–0.78 
(Table  1). From these studies, it is clear that there is some relation-
ship between radar backscatter intensity and water level in peatlands. 
However, the peatlands studied in Table  1 vary significantly in terms of 
vegetation cover, latitude, and land-use. Previous studies (e.g. Bechtold 
et al. (2018) and Lees et al. (2021)) have improved the strength of 
the relationship between backscatter intensity and WTD by using en-
vironmental variables to filter SAR data. Wagner et al. (1999) showed 
that vegetation dynamics and soil moisture affect radar backscatter. 
Similarly, several studies have applied corrections to backscatter data 
in order to mitigate the impact of vegetation on backscatter. Bechtold 
et al. (2018) used the cross-cover angles method (Wagner et al., 1999), 
while Lees et al. (2021) and Räsänen et al. (2022) applied incidence an-
gle and sine corrections to their data. Lees et al. (2021) found that these 
corrections improve the correlation coefficient between backscatter and 
WTD by 8.6% and 48.5%, respectively.

In a vegetated environment, the radar backscatter intensity (𝜎0𝑡 ) can 
be expressed by Eq.  (1) (Wang et al., 1995). Here, 𝜎0𝑡  is given by the sum 
of backscatter from the ground surface (𝜎0𝑠 ), volume scattering through 
the vegetation canopy (𝜎0𝑐 ), canopy–ground scattering (𝜎0𝑚), and double 
bounce scattering between the ground surface and trunks (𝜎0𝑑). 

𝜎0𝑡 = 𝜎0𝑠 + 𝜎0𝑐 + 𝜎0𝑚 + 𝜎0𝑑 (1)

𝜎0𝑠  is primarily affected by surface roughness and the dielectric 
soil properties (controlled by soil moisture). Therefore, soil moisture 
variation with WTD will affect these dielectric properties and 𝜎0𝑠 . This 
change in 𝜎0𝑠  will affect 𝜎0𝑡 , resulting in the correlations with 𝜎0𝑡  seen in 
Table  1.

Therefore, the relationship between soil moisture and 𝜎0𝑡  should be 
greatest in a bare peat environment. In this setting, there is significant 
seasonal variation in WTD, but limited vegetation cover to affect 𝜎0𝑐 , 
𝜎0𝑚, or 𝜎0𝑑 .

1.2. Monitoring peatland water table depth using multi-sensor approaches

Optical remote sensing has also been applied to peatland observa-
tion. In this paper, Sentinel-2 is used. This is a companion platform 
to Sentinel-1 that is also part of the European Union’s Copernicus 
programme. Currently, the Sentinel-2 mission is a constellation of satel-
lites (Sentinel-2A, launched in June 2015, and Sentinel-2B, launched 
in March 2017), with a 5-day return period (European Space Agency, 
2024a). It images in 13 spectral bands, with spatial resolutions varying 
from 10 m to 60 m (European Space Agency, 2024b). Bhatnagar 
et al. (2020) used Sentinel-2 indices to map vegetation communities at 
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Fig. 1. Summary of rewetting measures implemented at Castlegar and Clooneeny bogs. (a). LiDAR digital terrain model of surface elevation at Castlegar bog. Annotated are 
drains, dams, bunds, piezometers, and stream location. (b). True-color Sentinel-2 image, acquired on 28/06/2018, showing Castlegar bog before rewetting strategies had been 
implemented. (c). True-color Sentinel-2 image, acquired on 01/06/2024, showing Castlegar bog after rewetting strategies had been implemented. (d). LiDAR Digital Terrain Model 
of surface elevation at Clooneeny bog. Annotated are drains, drain dams, bunds, and piezometers. This figure was made by adapting data from Bord na Móna. (e). True-color 
Sentinel-2 image, acquired on 28/06/2018, showing Clooneeny bog before rewetting strategies had been implemented. (f). True-color Sentinel-2 image, acquired on 19/05/2024, 
showing Clooneeny bog after rewetting strategies had been implemented.
multiple Irish peatlands, while Ingle et al. (2023) used high-resolution 
PlanetScope imagery to map vegetation and upscale CH4 fluxes at Irish 
peatlands. Other studies have found a relationship between shortwave 
infrared (SWIR) imagery and WTD (Burdun et al., 2020; Räsänen et al., 
2022; Isoaho et al., 2024). Multi-sensor approaches, those that combine 
satellite radar and optical imagery, have used machine learning models 
to predict WTD with good success. Räsänen et al. (2022) use a Random 
Forest approach with Sentinel-1, Sentinel-2, and Landsat data, to pre-
dict WTD in Finnish peatlands, with average 𝑅2 of 43.1%. They studied 
50 sites, each with an individual WTD monitoring station. Isoaho et al. 
(2024) use a similar approach, using 268 WTD measurements at six 
Finnish peatlands, with a model 𝑅2 of 0.71 and RMSE of 0.06 m. In 
both these studies SWIR indices were the most important features for 
predicting WTD, while SAR indices were of limited importance.

Despite the limited importance of SAR, model performance was 
still improved when SAR data was considered in Isoaho et al. (2024). 
As such, SAR data are considered here. Additionally, the dense in-
situ network of piezometers at the peatlands included in the current 
paper present a robust dataset on which to test the temporal and 
spatial variability of correlation between 𝜎0𝑡  and WTD, as identified by 
previous studies.
3 
2. Materials and methods

Here, Sentinel-1 and Sentinel-2 radar and optical data were used 
to investigate WTD. This was done using two approaches, correlation 
analysis and machine learning. For correlation analysis, the data were 
filtered using water level limits and meteorological data (Section 2.2) 
before analysis was performed (Section 2.3). For the machine learning 
model, both SAR and optical data are prepared alongside meteorolog-
ical and in-situ data (Section 2.4), before machine learning analysis 
performed (Section 2.5). Decision tree models (Random Forest and Gra-
dient Boosting) are compared and validated using out-of-bag scoring 
and cross-validation, before making new predictions of WTD.

2.1. Study sites

Castlegar bog (Latitude: 53.398, Longitude: −8.249) is located in 
east County Galway, bordering County Roscommon (Fig.  1). This raised 
peatland was subjected to commercial peat extraction for >20 years 
by Bord na Móna (a semi-state company responsible for developing 
and maintaining Irish peatlands), until 2018 (Jennings O’Donovan & 
Partners Limited, 2021). Peat harvested from the site was used as fuel 
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in power stations, though as commercial harvesting here was relatively 
short-lived, peat depths in excess of 4 m still exist throughout much of 
the site (Jennings O’Donovan & Partners Limited, 2021). The majority 
of landcover at Castlegar is bare peat, though there are some areas of 
birch woodland and heather (Jennings O’Donovan & Partners Limited, 
2021). The River Suck runs parallel to the site, and is connected to the 
peatland by a stream to the east of the site (Fig.  1). In-situ monitoring 
here consists of 45 piezometers, sampling at hourly intervals, with data 
available from 19/12/2020–02/08/2023.

Clooneeny bog (Latitude: 53.708, Longitude: −7.853) is located in 
County Longford, approximately 3 km west of Longford Town (Fig.  1). 
Industrial-scale peat harvesting was undertaken here by Bord na Móna 
for >30 years, from 1985–2018, and used as fuel in the Lanesborough 
power station (Planning and Consultants, 2022). Despite the extended 
timescale of harvesting, remnant peat depths typically exceed 2 m, 
with some areas as deep as 4 m and as shallow as 1 m (Planning and 
Consultants, 2022). Clooneeny bog is primarily drained by the River 
Fallan to its west (Planning and Consultants, 2022). Like Castlegar 
bog, landcover is primarily bare peat, with some areas of birch scrub, 
heather, and grassland Planning and Consultants (2022). In-situ mon-
itoring here consists of six piezometers, sampling at hourly intervals, 
with data available from 18/12/2021–06/06/2023. Met stations at 
Mt. Dillon (Latitude: 53.727, Longitude: −7.981), Lecarrow (Latitude: 
53.544, Longitude: −8.047), and Athenry (Latitude: 53.289, Longi-
tude: −8.786), provide daily historical measurements of meteorological 
parameters, providing data indicative of on-site conditions, for both 
peatlands. At Clooneeny, rewetting features were not installed until 
August 2022, limiting the available satellite data when compared to 
Castlegar.

To date, rewetting strategies have consisted of drain blocking, bund 
installation, and Sphagnum inoculation at various locations through-
out both Castlegar and Clooneeny (Jennings O’Donovan & Partners 
Limited, 2021; Planning and Consultants, 2022). These efforts have 
transformed the topography of both sites from their degraded bare peat 
state. In Fig.  1, this transformation can be seen in the darker (wetter) 
areas in true-colour Sentinel-2 images from 2018 and 2024, acquired 
pre-, and post-restoration, respectively. The recent restoration efforts 
(temporally overlapping with the Sentinel-1 and Sentinel-2 missions), 
extensive bare peat surfaces, and dense in-situ piezometer network, 
make Castlegar and Clooneeny bogs ideal study candidates for satellite-
based remote sensing, and offer a unique opportunity to systematically 
investigate the relationship between radar-backscatter, optical indices, 
and WTD.

2.2. Data preprocessing for SAR–water table depth correlation analysis

To compare water level with SAR backscatter, data from 40 piezome-
ters at Castlegar bog were used (data from 5 deep piezometers were not 
used), from 01-01-2021 to 31-12-2023 (Figure A.7). The relationship 
at Clooneeny was not considered, as there are much fewer piezometer 
measurements (six, Fig.  1).

2.2.1. Preparation of SAR data
Sentinel-1 L1 GRD-HD files from 15-01-2021–31-12-2023 (descend-

ing) and 17-02-2021–22-12-2023 (ascending) were downloaded using 
the Alaska Satellite Facility Data Search Vertex (https://search.asf.
alaska.edu/). The entire processing and analytical workflow conducted 
here are presented in Fig.  2. GRD (Ground Range Detected) data have 
been multi-looked and projected to ground range from SLC files. Frame 
413, on path 23, was used in the descending flight direction, and 
frame 173 path 74 in ascending. These data were then processed with 
the Sentinel Applications Platform (SNAP), using the Graph workflow 
builder. The graph files detailing the steps taken to process these data 
are freely accessible (See Data and Code Availability). Once each scene 
had been processed, they were coregistered as a multi-temporal stack. 
Speckle noise is the primary source of noise in radar backscatter images 
4 
and was corrected by filtering this stack using a multi-temporal Lee 
Sigma speckle filter. This workflow was performed using both the VV 
and VH polarised bands, varying the level of multi-looking to create 
output stacks with pixel spacing of 30 m.

2.2.2. Water level filtering
The WTD data were provided by Bord na Móna, and form a robust 

dataset of measurements of water level from the surface. Hourly time 
series of WTD for every piezometer and average site-wide WTD are 
presented in Figures A.7 and A.8. Prior to correlation analysis, these 
hourly sampled time series were resampled to daily average values. 
In addition, any dates where the water level is >0 m (that is, when 
there is surface water) were filtered. This was done as surface water 
acts as a specular reflector, resulting in backscatter signals that are not 
associated with surface scattering.

2.2.3. Environmental filtering
The data were filtered using rainfall measurements from the Met 

Éireann Historical Data portal (https://www.met.ie/climate/available-
data/historical-data). Days where total rainfall exceeded 20 mm were 
filtered, as were those where the soil temperature at 0.10 m depth was 
less than 4 ◦C (after Bechtold et al. (2018) and Lees et al. (2021)). 
Excessive rainfall or freezing may alter soil backscatter characteristics, 
and result in a spurious relationship between 𝜎0𝑡  and WTD. Historical 
meteorological data from the Mt. Dillon weather station (Lat.: 53.727, 
Lon.: −7.981) were used to filter by ground temperature, and from 
the Lecarrow weather station (Lat.: 53.544, Lon.: −8.047) to filter by 
rainfall — these were selected as they are the closest stations to the 
peatland that record their respective parameters. Though vegetative 
corrections have been shown to significantly affect the correlation 
coefficient between 𝜎0𝑡  and WTD (Bechtold et al., 2018; Lees et al., 
2021; Räsänen et al., 2022; Lees et al., 2021), such corrections are 
not applied to the data here as both peatlands in this study are in a 
post-industrial state, and are dominated by bare peat surfaces.

2.3. SAR–water table depth correlation analysis

For each piezometer and its corresponding pixel, the Pearsons corre-
lation coefficient (𝑅) between the water level data and SAR backscatter 
intensity was calculated, in both polarisations and track directions. 
This calculation was then performed at each piezometer both spatially 
and temporally. Spatial correlation analysis was also performed using 
selected optical indices, from the dataset described below.

2.4. Data preprocessing for machine learning

Machine learning algorithms were also used to effectively model 
WTD. Here, SAR data were used alongside optical satellite data, in-situ 
measurements, and meteorological data (Fig.  2).

2.4.1. Preparation of satellite data
Both Sentinel-1 and Sentinel-2 provide year-round, regular coverage 

of the study sites. Here, data with zero-day separation were selected 
(e.g. both satellites imaged the target peatlands on the same day). As a 
result, cloud cover in Sentinel-2 imagery is the primary control on the 
satellite data included here. To identify suitable dates, every Sentinel-2 
acquisition across the study period was filtered (January 2021–June 
2023 at Castlegar, and August 2022–June 2023 at Clooneeny) so that 
cloud cover across the entire scene was < 50% (on the Copernicus 
Browser: https://browser.dataspace.copernicus.eu/). The study period 
is defined by when there was available piezometer data, following 
rewetting. Dates where the study sites were partially or wholly visible 
were identified and compared with Sentinel-1 acquisitions to iden-
tify same-day data for both satellites. These dates were downloaded 
and processed before further analysis. The used acquisition dates are 
presented in Table A.2.

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
https://www.met.ie/climate/available-data/historical-data
https://www.met.ie/climate/available-data/historical-data
https://www.met.ie/climate/available-data/historical-data
https://browser.dataspace.copernicus.eu/
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Fig. 2. Schematic describing the processing and analytical workflow for both correlation and machine learning analysis. Dark grey represents elements of the workflow that were 
conducted in ESA’s SNAP software (e.g. data processing), while light grey represents elements that were carried out in Python (e.g. data analysis). The in-figure hyperparameters 
refer to those used in Gradient Boosting.
The same workflow as Section 2.2.1 was followed (Fig.  2), with 
key differences. As individual dates were processed, coregistered multi-
temporal stacks were not created. Therefore, multi-temporal speckle 
filtering could not be performed, and instead spatial filtering was used 
prior to multi-looking. The SAR data were multi-looked to 30 m pixel 
spacing, and exported as geotiff products. This workflow was repeated 
for both VV and VH polarisations. Vegetative corrections were not 
applied to these data either.

Sentinel-2 L2a bottom-of-atmosphere products were downloaded 
from the Copernicus Dataspace Browser (https://browser.dataspace.
copernicus.eu/), and processed using SNAP. L2a products have been 
atmospherically corrected, are a ‘‘Bottom-Of-Atmosphere’’ reflectance 
product, and include Scene Classification Layers. These layers classify 
sources of noise in the scene, which is reduced by masking areas classi-
fied as cloud shadow, snow and ice, as well as cirrus clouds, and areas 
of medium and high cloud probability. These were again processed 
using the graph workflow, with graph files detailing the processing 
steps available in the Data and Code Availability section. To ensure 
seamless data fusion between Sentinel-1 and Sentinel-2, these data were 
resampled to 30 m pixel resolution (matching that of Sentinel-1), before 
being collocated, using the collocate function in the Raster Toolbox in 
SNAP. Here, each band from both platforms are aligned to a common 
geographical raster, to ensure consistent pixel indices during further 
analyses. Following this, the subset tool was used, this time to extract 
the relevant bands. The final product contained the following bands, 
ordered as: VV, NDVI, NDWI, STR, SAVI, CloudMask, TCG, TCW, Blue, 
Green, Red, NIR, SWIR1, SWIR2, VH, and was exported in BigTIFF 
format (Non-abbreviated names are listed in Table A.3). In addition to 
the machine learning approach described below, correlation analysis 
was also performed between selected optical indices (STR, SWIR1, 
SWIR2, NDWI, NDVI and Blue) and WTD at Castlegar, using the optical 
imagery contained in this dataset (Table A.2, Figure A.9).

As optical indices were considered in the machine learning model, 
environmental filtering (ground temperature, rainfall) was not carried 
out on this dataset (e.g. Bechtold et al. (2018) and Lees et al. (2021)), 
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as such indices are not affected by specular reflection. Instead, meteo-
rological data were used as predictor variables (Section 2.4.3), and days 
where WTD is >0 m are considered. In order to account for the different 
acquisition times of Sentinel-1 and Sentinel-2, the average WTD for 
each day was considered as the target variable.

2.4.2. Ground data
In-situ data were added to the datasets to add further constraints to 

the model, in order to investigate the influence of re-wetting features 
(Fig.  2). These were: distance from point to nearest bund, distance from 
point to nearest peat dam, and peat depth. For the training dataset, each 
of these were calculated from the location of each piezometer, while 
for the new predictions dataset, distances and depths were calculated 
for every point across the entire peatland. Peat depths were provided 
by Bord na Móna, while distances were calculated in QGIS with the 
following workflow (visualised in Figure A.10): each data point was ex-
pressed as a point shapefile, either from a CSV of piezometer locations, 
or with the ‘‘Raster Pixels to Points’’ tool, using 30 m SAR rasters. The 
outline of the bunds were expressed as point layers, every 0.5 m, using 
the ‘‘Points Along Geometry’’ tool. The closest peat dam, closest bund 
edge to each piezometer, and testing point were calculated using the 
‘‘Distance to Nearest Hub’’ tool. The depth of peat at each relevant point 
was calculated from the peat depth layer, using the ‘‘Sample Raster 
Values’’ tool. A final CSV file was exported containing latitude and 
longitude data for each point, the underlying depth of peat, the distance 
to the nearest bund, and distance to the nearest dam.

2.4.3. Meteorological data
To add further model constraints meteorological variables were also 

considered, namely the average maximum air temperature, and soil 
temperature on the day of satellite acquisition. These data were selected 
as they were freely accessible and available historically, thereby allow-
ing the testing of the relationship between WTD and meteorological 
variables. These were recorded at Athenry, and Mt Dillon weather 
stations, respectively, and again downloaded at daily resolution from 
the Met Éireann Historical Data portal (https://www.met.ie/climate/
available-data/historical-data).

https://browser.dataspace.copernicus.eu/
https://browser.dataspace.copernicus.eu/
https://browser.dataspace.copernicus.eu/
https://www.met.ie/climate/available-data/historical-data
https://www.met.ie/climate/available-data/historical-data
https://www.met.ie/climate/available-data/historical-data
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Fig. 3. Spatial distribution of correlation at piezometers between 𝜎0
𝑡  and WTD at Castlegar, in both VV and VH polarisations in ascending and descending track directions. (a). 

Absolute correlation coefficients of >0.5 between WTD and 𝜎0
𝑡 , in ascending VV polarisation. (b). Absolute correlation coefficients of >0.5 between WTD and 𝜎0

𝑡 , in ascending VH 
polarisation. (c). Absolute correlation coefficients of >0.5 between WTD and 𝜎0

𝑡 , in descending VV polarisation. (d). Absolute correlation coefficients of >0.5 between WTD and 
𝜎0
𝑡 , in descending VH polarisation. In all sub-plots, the extent of Castlegar bog is outlined in black, while installed drains, the location of drain dams and bunds are annotated. 
This figure was made by adapting data from Bord na Móna.
2.5. Machine learning predictions of water table depth

Both a Random Forest model (aggregate of multiple decision tree 
regressions (e.g. a ‘‘Forest’’)), and a Gradient Boosting Model (uses 
weak learners (short decision trees), and a differentiable loss function 
to predict the target variable) were tested (e.g. after the Random 
Forest modelling of Räsänen et al. (2022) and Isoaho et al. (2024)). 
All modelling was performed using the scikit-learn (sklearn) module in 
Python (Pedregosa et al., 2011).

The SNAP products were imported for each date, and the relevant 
variable (e.g. NDVI) was selected for the index at the geographic co-
ordinate at each piezometer. Cloud Masks, calculated in Section 2.4.1, 
were then applied, to remove data that had been obscured by clouds. At 
each geographic index (piezometer location) the peat depth, distance to 
bund, and distance to peat dam was appended, as was the meteorolog-
ical data for each date (Section 2.4.3). This was carried out using data 
from both Castlegar and Clooneeny bogs. The final formatted product 
was a Pandas DataFrame, containing 20 columns (though this number 
decreased with later filtering during feature importance testing), of 
which WTD was the target variable. This DataFrame contained 620 
points, on which the model was trained and tested.

2.5.1. Model validation
Model performance was evaluated using both out-of-bag testing 

and k-fold cross-validation (Fig.  2). In out-of-bag scoring, a fraction of 
the dataset ( 13  in this case) is withheld when training the model, and 
then used to test model performance by comparing predicted values to 
their known values. The data are shuffled prior to splitting, meaning 
that values are randomly sampled spatially and temporally. In k-fold 
cross validation, the data are first shuffled, before being subset into a 
number of equal size samples (given by 𝑘). Each subset is then withheld 
from the training dataset, and used to evaluate the performance of the 
model, trained on the rest of the data. This was performed 𝑘 times, 
to evaluate how the model performs across the entire dataset. The 
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model feature importance (how important is each predictor variable 
in predicting the target variable) was also determined, as a way to 
determine potential noise variables. These were determined with the 
‘‘feature_importances_’’ attribute in sklearn, where importance is deter-
mined by the average reduction in mean square error by each feature as 
well as by using SHAP values (SHapely Additive exPlanations: measures 
of how each feature contributes to a model’s prediction). The model 
was ran repeatedly, and the poorest performing variable systematically 
removed, until there was no performance improvement in either 𝑅2

or RMSE. An example of the final filtered variables are presented in 
Table A.4. Though these features represent best model performance, 
models were also evaluated with no SAR data, no ancillary variables, 
and individual ground-based variables (Figures A.11, A.12, and A.13). 
Hyperparameter testing was performed to tune the model using Grid 
Search Cross Validation (Table A.5). This resulted in the following 
settings in the Gradient Boosting model: 100 iterations, with a maxi-
mum of 12 leaf nodes in each decision tree, a learning rate of 0.15. 
Here, and when splitting the data during out-of-bag validation, the 
‘‘random_state’’ value (random generator seed value) was set to 42 (to 
ensure reproducibility between model runs).

2.5.2. New predictions of water table depth
Given the good model performance in cross validation (Table A.6), 

the entire dataset was used to train the Gradient Boosting model, which 
was then used to make predictions of WTD across entire peatlands. 
Four dates were selected for predictions at each peatland, two from 
the growing season and two during winter. At Castlegar these were 
25-04-2021, 29-06-2021, 21-11-2021, 16-11-2022, while at Clooneeny 
these were 29-06-2021, 28-08-2021, 21-11-2021, and 16-11-2022. The 
new predictions dataset was prepared in exactly the same way as the 
training dataset. However, for the date of interest, predictor variables 
are determined at every pixel across the peatland (e.g. with 30 m 
spacing), instead of just at the piezometer coordinates, and there was 
no column containing target (WTD) values. The trained model was then 
used on this dataset to predict WTD across the entire peatland.
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Fig. 4. Temporal correlation between 𝜎0
𝑡  and WTD at Castlegar, in both VV and VH polarisations in ascending and descending track directions. (a). Correlation coefficients between 

WTD and 𝜎0
𝑡 , in ascending VH polarisation. (b). Correlation coefficients between WTD and 𝜎0

𝑡 , in ascending VV polarisation. (c). Correlation coefficients between WTD and 𝜎0
𝑡 , in 

descending VV polarisation. (d). Correlation coefficients between WTD and 𝜎0
𝑡 , in descending VH polarisation.
3. Results

3.1. Correlation between water table depth and radar backscatter at castle-
gar

In both polarisations and track directions, there are a range of cor-
relation coefficient values between 𝜎0𝑡  and WTD depth at each filtered 
piezometer (Fig.  3). Spatially, the VH polarisation in the descending 
track has minimum values of −0.13 (a weak negative correlation) 
and maximum values of 0.75 (moderate–strong positive correlation), 
with minimum values of −0.19 and maximum values of 0.78 in VV 
polarisation. Similarly in ascending, the VH polarisation has minimum 
values of −0.12 and maximum values of 0.72, with minimum values 
of −0.3 and maximum values of 0.76 in VV polarisation. In both track 
directions, VH polarisation is more strongly correlated with WTD than 
VV, with VH correlation coefficients of >∣ 0.5 ∣ at 55% and 43% 
of piezometers in descending and ascending tracks, respectively. This 
decreases to at 40% and 35% for piezometers in VV polarisation in 
descending and ascending tracks, respectively.

In both polarisations, areas where correlation between 𝜎0𝑡  and WTD 
is consistently well correlated (>∣ 0.5 ∣) are identified. The land surface 
at each of these locations is characterised by flat, bare peat surfaces, 
with minimal topographic changes. Under these conditions, the rela-
tionship between WTD and 𝜎0𝑡  is strongest, as there is no vegetation 
and consistent surface scattering properties. In Fig.  3 the correlation 
7 
between 𝜎0𝑡  and WTD at each piezometer, overlaid on restoration 
structures at Castlegar, are presented. From this, the following charac-
teristics can be identified: strongly correlated piezometers are generally 
located in the open peatland, away from bunds. The majority of poorly 
correlated piezometers are located in, or adjacent to bunds. This is 
consistent between both polarisations, in both track directions. In the 
southeastern sector of the peatland, there is a series of four piezometers 
that are generally poorly correlated, that occur along the boundary 
between dammed peatland and undammed peatland. This result led 
to the inclusion of rewetting parameters (e.g. distance to bund) in the 
machine learning model.

Temporal correlation analaysis (e.g. the correlation coefficients be-
tween 𝜎0𝑡  and WTD are calculated through time rather than through 
space) provides a better insight into how the relationship between 𝜎0𝑡
and WTD changes through time (Fig.  4). For each track direction and 
polarisation, there is a seasonal alteration between more positive and 
more negative correlation. All results show more negative site-wide 
correlation in during the winter months (January, Fig.  4), and more 
positive correlations during the summer months (June–July, Fig.  4).

Correlation analysis of optical indices (Figure A.9) shows correlation 
coefficients of >∣ 0.5 ∣ at most tested piezometers. The direction of 
relationship changes between indices, with STR, NDWI, and NDVI 
are positively correlated, and SWIR1, SWIR2, and Blue are negatively 
correlated. This correlation analsysis may be further imporved with the 
consideration of more dates, as the tested optical dataset (24 dates) 
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Fig. 5. Model validation and feature importance comparison between Random Forest and Gradient Boosting models, using data from both Castlegar and Clooneeny. The model 
scores are presented in Table A.6. (a). Predicted vs. actual WTD values for out-of-bag Random Forest validation. A linear regression fit is indicated by the black line. (b). Predicted 
vs. actual WTD values for out-of-bag Gradient Boosting validation. A linear regression fit is indicated by the black line. (c). Feature importances for out-of-bag Random Forest 
validation. (d). Feature importances for out-of-bag Gradient Boosting validation.
was much smaller than the tested SAR datasets (85 and 97 dates in 
ascending and descending tracks, respectively).

3.2. Model feature importance

Results of model validation are presented in Fig.  5, with out-of-
bag testing showing Gradient Boosting to be an improved predictor to 
Random Forest (Table A.6), with out-of-bag 𝑅2 values of 0.78 and 0.72, 
respectively. Though each model performs differently, there are some 
key similarities: the most significant features (top two or three in Fig. 
5) in every validation are optical indices relating to SWIR, and tassled 
cap wetness. SAR indices have consistently poor feature importance. VV 
polarised backscatter is consistently a moderately performing feature. 
VH polarised backscatter is removed from the final model run as it is 
a borderline noise index: both 𝑅2 and RMSE scores improve when it is 
removed from the model. In-situ data concerning re-wetting structures 
and meteorological data are moderately important features: they are 
unlikely to predict WTD by themselves, but improve model perfor-
mance when included with satellite data. Model features were further 
interrogated using SHAP values. These again showed that shortwave in-
dices contribute the most to the model output, followed by in-situ data, 
other optical indices, and SAR data (Figure A.14). Interpreting these 
values (Figure A.15 and Figure A.16) enabled deeper analysis of feature 
importance. For both STR and TCW, low values correspond to a deeper 
WTD, while for other shortwave indices (e.g. SWIR1 and SWIR2), low 
values correspond to a higher WTD. These values also illustrate the 
impact of meteorological data on the model performance. For example, 
days of higher soil temperature, correspond to a deepening in WTD, as 
shown in Figure A.15 and Figure A.16. This analysis shows features that 
have a synergistic relationship (e.g. low values of STR and peat depth 
correspond to deeper WTD), while features such as soil temperature 
and TCW have an antagonistic relationship.
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When SAR variables were removed from the gradient boosting 
model, out-of-bag 𝑅2 was 0.77 and RMSE was 12.74 (Figure A.11). 
When all non-satellite variables were removed from the gradient boost-
ing model, out-of-bag 𝑅2 was 0.51 and RMSE was 18.53 (Figure A.12). 
When distance to bund was the sole in-situ measurement, out-of-bag 
𝑅2 was 0.7 and RMSE was 14.54 (Figure A.13). In Figure A.17, new 
predictions of WTD at Ballaghurt bog (53.321, −7.875) were made with 
no in-situ variables, though with greatly diminished model performance 
(R2 < 0.6).

3.3. Predicting water table depth

Predicted WTDs from the Gradient Boosting model are presented 
as spatial maps in Fig.  6. Predictions of estimated minimum, median, 
mean, and maximum WTD are also presented in Table A.7. The lack of 
data from 2021 at Clooneeny limited the available dates at Clooneeny, 
resulting in partial predictions in Fig.  6, as dates with some cloud 
cover are predicted. The WTD at Castlegar is consistently shallower 
than that at Clooneeny. On 16-11-2022 the WTD at Castlegar is >0.1 m 
shallower (Table A.7). The WTD at both peatlands was much shallower 
in the winter than during the growing season. At both peatlands both 
predictions of growing season WTD were over twice as deep as the 
predictions of winter WTD. At both sites, areas where bunds have 
been established are visible in predictions, and typically have shallower 
WTDs (Fig.  6).

3.4. Prediction intervals

Uncertainty is quantified by calculating 90% prediction intervals, 
using the 5% and 95% quantiles – e.g. the range within which the 
prediction is expected to fall, 90% of the time. These intervals are 
presented in Figure A.18, and have an average range of approximately 
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Fig. 6. Maps of predicted water table depth at Castlegar and Clooneeny bogs, annotated with the average predicted water table depth, and percentage of shallow water table 
depth. Here, shallow water table depth refers to the optimal range for rewetting of shallower than −0.2 m from the surface. Predicted water table depth at Castlegar on (a). 
29-06-2021. (b). 21-11-2021. (c). 16-11-2022. (d). 10-01-2024. Fraction of water table depth deeper that −0.2 m at Castlegar, on (e). 29-06-2021. (f). 21-11-2021. (g). 16-11-2022. 
(h). 10-01-2024. Predicted water table depth at Clooneeny, on (i). 29-06-2021. (j). 21-11-2021. (k). 16-11-2022. (l). 10-01-2024. Fraction of water table depth deeper than −0.2 m 
at Clooneeny, on (m). 29-06-2021. (n). 21-11-2021. (o). 16-11-2022. (p). 10-01-2024. White areas on 10-09-2022, and 22-06-2023 denote areas where clouds have been masked 
from the Sentinel-2 imagery.
0.4 m. The range between the 25% and 75% prediction interval quar-
tiles is approximately 0.1 m. These predictions show (Figure A.18), that 
even when uncertainty is accounted for, the average growing season 
WTD is less than the ideal 0.2 m below the surface required for effective 
peatland management.

4. Discussion

4.1. Controls on correlation between WTD and radar backscatter

The strength of the relationship between WTD and 𝜎0𝑡  varies spa-
tially and temporally (Figs.  3 and 4), and there is no clear way of 
using 𝜎0𝑡  alone as a predictive tool. Like the studies presented in Table 
1 (e.g. Kasischke et al. (2003) and Hrysiewicz et al. (2023)), Fig.  3 
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shows a range of correlation strengths, from which the following can be 
observed: the strongest correlation between WTD and 𝜎0𝑡  occurs when 
the studied point is located in open peatland, away from rewetting 
structures such as bunds. Here, topographic changes introduced by 
bunds may be sufficient to decrease the correlation between 𝜎0𝑡  and 
WTD. In these locations, there are two surfaces that radar waves are 
scattering off (top of bund and trough of bund), each a separate distance 
to the water table. In some locations piezometers are consistently 
poorly correlated, despite being in open, flat peatland. In the absence 
of any adjacent rewetting structures to this poor correlation, it is pos-
sible that local topography or vegetation is impacting the relationship 
between WTD and 𝜎0𝑡 . In these locations, vegetative corrections may 
increase the strength of the relationship (Wagner et al., 1999; Lees 
et al., 2021), though the degree of vegetative cover should be first 
quantified before performing such corrections. The seasonal alteration 
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between positive and negative correlation (Fig.  4) shows that SAR 
backscatter may be used to indicate seasonal shallowing and deepening 
of WTD, though again, with limited utility as a predictive tool.

4.2. Seasonal water table depth at castlegar and clooneeny

As discussed in Section 1, peatland WTD must be shallower than 
−0.2 m (and ideally between −0.05 to −0.13 m) to promote optimal 
restoration conditions (Regan et al., 2020; Evans et al., 2021). The 
site-wide WTD at both peatlands predicted here varies significantly 
throughout the year (Fig.  6), with the shallowest WTD occurring during 
the winter months, and the deepest during the spring and summer 
months. This variation in WTD suggests that optimal conditions only 
exist for part of the year; during winter much of the peatland may 
have a net negative GHG balance (e.g. act as a sink), and have suitable 
conditions for Sphagnum growth (three of four winter-time predictions 
of average WTD at Castlegar and Clooneeny are < 0.2 m below the 
surface) (Regan et al., 2020; Evans et al., 2021). However, vegetation 
growth is limited there during the winter months, meaning that despite 
suitable WTDs, CO2 assimilation is most likely negligible. During the 
summer months, every predicted WTD is deeper than the optimal range 
(Fig.  6), suggesting that the peatlands are acting as both a net source 
of GHG (Evans et al., 2021), and are simultaneously not sequestering 
CO2. However, due to data availability, the majority of dates where 
WTD was predicted are from 2021, when Sentinel-1A and Sentinel-1B 
were still in constellation. The average WTD at Castlegar has shallowed 
since then (Figure A.7), suggesting that rewetting conditions may have 
improved since these dates.

4.3. Management implications for peatland rewetting

This study demonstrates the usefulness of multi-sensor remote sens-
ing in modelling peatland WTD, and indicates that satellite remote 
sensing may be a powerful tool in the management of peatland restora-
tion (Monteverde et al., 2022). The ability to predict WTD site-wide 
over several square kilometres may greatly complement in-situ in-
strumentation, allowing for evaluation of the restoration of entire 
peatlands (Isoaho et al., 2024), rather than of instrumented locali-
ties (Asmuß et al., 2019). Additionally, the data, software, and code 
used here are wholly open-source and free to access, and require no 
specialist computational facilities (Data and Code Availability). The 
research presented here was conducted using an Apple Macbook Air 
with an M2 processor, and 8 GB of RAM. The Sentinel-1 and Sentinel-2 
files were up to 2 GB in size, and the final processed stacks output from 
SNAP were approximately 20 MB. Maximum memory usage during 
model training was approximately 800 MB, and approximately 900 MB 
when making new predictions. Given the low computational cost, this 
approach is scalable to include greater spatial coverage, more complex 
models, or higher resolution data. As such, this approach may be freely 
implemented into ongoing management plans, allowing for continuous 
modelling of WTD.

It should be borne in mind that the dates predicted here required a 
cloud-free Sentinel-2 acquisition in order to be modelled. Cloud-free 
weather is typically associated with low-levels of precipitation, and 
accordingly, a potential lowering of WTD (Bechtold et al., 2018). A 
key inhibitor to the model performance is the requirement for same-day 
acquisitions of Sentinel-1 and cloud-free Sentinel-2. However, as shown 
in Fig.  5, SAR backscatter intensity does not significantly improve 
model performance. Additionally, as shown in Fig.  6, the majority of 
predicted dates are from before 2022. During this time, both Sentinel-
1A and Sentinel-1B were in constellation, allowing for more frequent 
same-day Sentinel-1 and Sentinel-2 acquisitions. The comparatively 
limited data from the single satellite Sentinel-1 mission (as was the case 
during this study) greatly inhibits the potential of multi-sensor SAR and 
optical analyses. The importance of optical indices as model features 
here, good model performance when SAR is not included, and previous 
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studies (Räsänen et al., 2022; Isoaho et al., 2024), suggest that future 
models may benefit by the omission of Sentinel-1 data. This would 
greatly increase the amount of data considering in the modelling, by 
allowing dates where there has been a cloud-free optical acquisition to 
be included without the added constraint of a concurrent SAR overpass. 
The larger dataset may allow for more complex modelling to be per-
formed. Deep learning techniques such as Convolutional or Recurrent 
Neural Networks may allow for even more accurate predictions of 
WTD. In the context of the management of peatland restoration, such 
a model would allow for site-wide evaluation of WTD, on any day with 
a cloud-free optical overpass.

Both peatlands modelled here are at similar stages of rewetting, 
consisting of extensive bare peat surfaces, peat dams, and peat bunds. 
There are numerous peatlands at such a stage where this model has 
potential to accurately predict WTD. However, for more general appli-
cation, variables relating to rewetting structures and peat depth should 
not be considered as rewetting strategies vary site-to-site, and may not 
involve peat bunds or dams. In Figure A.17, we make new predictions 
of WTD at Ballaghurt bog, in the Irish midlands, without considering 
in-situ data. Though model performance is greatly diminished, this 
showcases the model potential in considering site-wide WTD at a much 
larger scale. Additionally, at rewetted peatlands that have successfully 
promoted vegetation growth, optical indices such as NDVI and EVI may 
be more significant features (given that they provide information about 
vegetation cover, e.g. Bhatnagar et al. (2020)). As such, a model based 
on optical indices, that considers the degree of vegetation at a peatland 
may have the best potential for general applicability and prediction 
of WTD. This would allow for continuous modelling throughout the 
progression of the rewetting process, allowing for changes in peatland 
WTD to be characterised, from early stage rewetting, to a fully restored 
peatland.

5. Conclusions

In this paper, multi-sensor remote sensing data and in-situ data have 
been used to make predictions of WTD in degraded, bare peat peat-
lands. Additionally, the relationship between WTD and radar backscat-
ter intensity has been systematically tested. Clear spatial controls on 
this relationship have been identified, finding that it is highly sensitive 
to changes in surfaces scattering properties — changes in topography or 
surface scattering properties may decouple this relationship. Predicted 
WTD at both Castlegar and Clooneeny bogs show that, typically, the 
water table is deeper than 0.2 m below the surface. Under current 
conditions, restoration from this degraded, bare peat environment, to 
‘‘natural’’ conditions is unlikely, until site-wide WTD can be maintained 
at shallower levels. This study has presented methodology whereby 
WTD may be predicted at degraded peatlands, allowing for updated 
measurements under certain conditions. Going forward, this approach 
may be applied on a larger scale, and used to predict WTDs more gener-
ally at peatlands, in order to inform restoration management strategy. 
This has implications nationally, in Ireland, but also internationally, as 
industrialised peatlands transition from a degraded status, to restored.
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