1	Published as: Serrenho, A., Fenton, O., Murphy, P.N.C., Grant, J., Healy, M.G.
2	2012. Effect of chemical amendments to dairy soiled water and time between
3	application and rainfall on phosphorus and sediment losses in runoff. Science of
4	the Total Environment 430: 1-7. DOI: 10.1016/j.scitotenv.2012.04.061
5	
6	Effect of chemical amendments to dairy soiled water and time between
7	application and rainfall on phosphorus and sediment losses in runoff
8	
9	A. Serrenho ^{1,2} , O. Fenton ³ , P.N.C. Murphy ³ , J. Grant ⁴ , M.G. Healy ^{1*}
10	
11	¹ Civil Engineering, National University of Ireland, Galway, Co. Galway, Rep. of
12	Ireland.
13	² Geophysics Centre of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
14	³ Teagasc, Johnstown Castle, Environmental Research Centre, Co Wexford, Rep. of
15	Ireland.
16	⁴ Teagasc, Ashtown, Dublin 15, Co. Dublin, Rep. of Ireland
17	
18	
19	*Corresponding author. Tel: +353 91 495364; fax: +353 91 494507. E-mail address:
20	mark.healy@nuigalway.ie
21	
22	Abstract
23	
24	Dairy soiled water (DSW) is a dilute, low nutrient effluent produced on Irish dairy
25	farms through the regular washing down of milking parlours and holding areas. In

26 Ireland, there is no closed period for the land application of DSW except where heavy rain is forecast within 48 h. Chemical amendments have the potential to decrease 27 phosphorus (P) and suspended sediment (SS) loss from DSW applied to land. This 28 29 study examined the impact of three time intervals (12, 24 and 48 h) between DSW application and rainfall and five treatments (control, unamended DSW, and DSW 30 amended with lime, alum or ferric chloride (FeCl₂)) on P and sediment losses from an 31 intact grassland soil in runoff boxes. Rainfall was simulated at 10.5 ± 1 mm h⁻¹. 32 Phosphorus concentrations (1-1.6 mg L^{-1}) in runoff from DSW application, while not 33 34 quantitative measures of P loss to surface waters in the field, indicated the importance of incidental P losses and that the current 48 h restriction in Ireland is prudent. 35 Unamended DSW application increased P loss by, on average, 71 %, largely due to an 36 37 increase in particulate phosphorus (PP) loss. All three amendments were effective in 38 decreasing P and SS losses in runoff and, apart from the SS results for lime, were significantly different (p<0.05) to the control at at least one time point. Lime (a 64 % 39 40 reduction in total phosphorus (TP) in comparison with DSW only) was less effective than alum or FeCl₂, likely due to the lower solubility of CaCO₃ in water. Chemical 41 42 amendment showed potential to decrease P losses from land application of DSW, but the efficacy of such amendments would need to be assessed in field trials and a cost-43 benefit analysis conducted to further examine whether they could be practically 44 45 implemented on farms.

46

47 *Keywords*: Dairy soiled water; farm effluent; application timing; incidental loss;

48 chemical amendment.

49

50 **1. Introduction**

52	Livestock production based on grazed grassland is associated with inputs of nitrogen
53	(N) and phosphorus (P) to soils, including dung and urine deposition, chemical
54	fertilizers, and organic fertilizers (manures and slurries). Dairy soiled water (DSW) is
55	one such organic fertilizer on dairy farms. It consists of wash-water from the milking
56	parlour and holding areas for livestock, which contains parlour washings, livestock
57	faeces and urine. In Ireland, DSW is defined as a wastewater with a 5-d biochemical
58	oxygen demand (BOD ₅) of less than 2,500 mg L^{-1} and a dry matter (DM) content of
59	less than 1 % (SI 610 of 2010), distinguishing it from more concentrated cattle
60	slurries. Dairy soiled water is generated every d on dairy farms and can be highly
61	variable in composition. Martínez-Suller et al. (2010) found that, due to management
62	practices, BOD ₅ can reach as high as 8,400 mg L^{-1} and DM can be far in excess of 1
63	%. However, in a survey of 60 Irish dairy farms over a year, Minogue et al. (2010)
64	found that mean BOD ₅ concentration was 2,246 mg L^{-1} and mean DM was 0.5 %, and
65	most samples were below the BOD_5 and DM limits. Application to land is the most
66	common method for disposal of DSW, as it has a high nitrogen fertilizer replacement
67	value (Minogue et al., 2011). However, there is a risk of nutrient (N and P) loss
68	associated with land application of all types of slurries and DSW (Di et al., 1998;
69	Woodard et al., 2002; Withers and Bailey, 2003; Ryan et al., 2006), particularly
70	incidental P losses in runoff, when rainfall events follow shortly after P application to
71	the soil. Such incidental losses can account for a large portion of P loss from
72	agricultural fields (Sharpley and Tunney, 2000).
73	

The Statutory Instrument (SI) governing the application of DSW to land in Ireland (SI
610 of 2010) limits application at 50 m³ ha⁻¹ over any 42-d period and specifies that it

76 cannot be applied to land if heavy rain is forecast within 48 h of application. Unlike 77 more concentrated cattle slurries, DSW is not subject to a 'closed period' for 78 application in the winter months when soils tend to be wet and heavy rainfalls 79 associated with Atlantic depressions occur. It can be very difficult to forecast rain 80 events in Ireland, particularly in winter months, and application is likely to occur at time intervals shorter than 48 h before heavy rain in some instances. No study has, to 81 82 date, examined the impact of short time durations between DSW application and surface runoff of nutrients and suspended sediment (SS). Potential methods to 83 84 mitigate nutrient and SS loss in runoff when rainfall occurs at these time intervals also 85 warrant investigation.

86

87 The potential of chemical amendments, such as lime, gypsum, alum and ferric 88 chloride, to decrease P loss from soils has been investigated by numerous researchers (e.g. Callahan et al., 2002; Zvomuya et al., 2006; Murphy and Stevens, 2010). There 89 90 has also been some investigation of the impacts of amendments to agricultural wastewaters, in particular, manure (Kalbasi and Karthikeyan, 2004; Brennan et al., 91 92 2011) or poultry litter (Moore and Edwards, 2005), on surface runoff of nutrients, metals and SS. These and other studies reported that there was no increased risk of 93 94 heavy metal release to runoff water, following chemical amendment of poultry litter 95 or agricultural wastewaters (Moore et al., 1998; Edwards et al., 1999; Brennan et al., 2011). However, little work has been conducted on DSW (Fenton et al., 2011). The 96 97 mode of addition of chemicals to wastewater may vary between incorporation into 98 soil (Novak and Watts, 2005; Murphy, 2007), direct addition to manure (Moore et al., 1998), or addition after application of manure to land (Torbert et al., 2005). Brennan 99 100 et al. (2011) found that poly-aluminum chloride hydroxide (PAC), added at 0.93:1

101	aluminum (Al):total phosphorus (TP) of slurry, reduced dissolved reactive phosphorus
102	(DRP) by up to 86 %, compared with the surface runoff from dairy cattle slurry alone;
103	while alum, added at 1.11:1 Al:TP of slurry, was most effective in reducing SS (88
104	%), TP (94 %), particulate phosphorus (PP) (95 %), total dissolved phosphorus (TDP)
105	(81 %), and dissolved un-reactive phosphorus (DUP) (86 %). Fenton et al. (2011)
106	investigated the use of chemical amendments to reduce P losses arising from the land
107	application of DSW to grassland in a desk-scale experiment and found that the most
108	effective chemicals were alum (72 % reduction), $FeCl_2$ (89 % reduction) and lime (83
109	% reduction). Therefore, these three amendments were selected for further study in
110	the present laboratory runoff experiment.
111	
112	The aim of the present study was to examine the effect of (1) high intensity rainfall
113	events after 12, 24 and 48 h of land application of DSW to grassland, and (2)
114	chemical amendment of DSW on losses of P and SS in runoff.
115	
116	2. Materials and Methods
117	
118	Intact 0.1 m-deep and 0.5 m-long soil cores were collected from grassland, which had
119	not received fertiliser applications for more than 10 y, in Galway City, Republic of
120	Ireland (53°16'N, 9°02' W). Soil cores (n=3) taken to a depth of 0.1 m below the
121	ground surface from the same location, were air dried at 40 °C for 72 h, crushed to
122	pass a 0.002 m sieve, and analysed for Morgan's P (Pm; the national test used for the
123	determination of plant available P in Ireland) using Morgan's extracting solution
124	(Morgan, 1941). Water extractable phosphorus (WEP) was measured by shaking 0.5 g
125	of soil in 40 ml of distilled water for 1 h, filtering (0.45 $\mu m)$ the supernatant water and

133	2.1 Dairy soiled water sampling and analysis
132	
131	ignition (B.S.1377-3; BSI, 1990b).
130	1990a) and the organic matter content of the soil was determined using loss on
129	to-soil. Particle size distribution (PSD) was determined using B.S.1377-2:1990 (BSI,
128	of the soil cores) was determined using a pH probe and a 2:1 ratio of deionised water-
127	replication (n=3) was used in analysis of each of the 3 cores. Soil pH (n=3 from each
126	determining P colorimetrically. The soil cores were kept separate for analysis and

Dairy soiled water produced from the concrete holding areas (non-scraped) and 135 milking parlour washings of 137 spring calving dairy cows (milked twice daily) at the 136 137 Environmental Research Centre (Teagasc, Wexford), was collected in March, 2011. High pressure hoses were used to clean the yards. There were three tanks, connected 138 in series, with a total capacity of approximately 52 m^3 and a working capacity of 139 140 approximately 80 %. The tanks were agitated for 20 min until the DSW was homogenized, and DSW was collected in a 10-L plastic drum and transported to the 141 142 laboratory in a temperature-controlled container within one d of sample collection. The DSW was stored at 4 °C until immediately prior to the start of the experiment 143 144 (about 2 d after sample collection). The sample was fully analysed colorimetrically for 145 the following water quality parameters using a nutrient analyser (Konelab 20, Thermo Clinical Labsystems, Finland) (each tested at n=3 and, with the exception of TP, 146 filtered through a 0.45 µm filter): ammonium-N (NH₄-N), nitrite-N (NO₂-N), nitrate-147 148 N (NO₃-N), total ammoniacal N (TAN), DRP and TP (after acid persulphate digestion) in accordance with the standard methods (APHA, 2005). To test for TAN, 149 150 50 ml of DSW was diluted in 1 L 0.1M HCl and then tested in the nutrient analyser.

- pH was measured using a pH probe (WTW SenTix 41 probe with a pH 330 meter,
 WTW, Germany) and the DM content was determined by drying at 40°C for 72 h.
- 153

154 **2.2 Experimental treatments**

155

The five treatments examined in this study were: (1) control (grassed soil only), (2) 156 157 unamended DSW, and DSW amended with either (3) aluminium sulphate 18-hydrate (Al₂(SO₄)₃.18H₂O) (alum), (4) analytical grade FeCl₂, or (5) burnt lime (Ca(OH)₂). 158 159 Amendments were applied at stoichiometric ratios determined from Fenton et al. (2011). Alum was applied at a rate of 8.8:1 (AI:TP), ferric chloride at a rate of 200:1 160 (Fe:TP), and lime at a rate of 2,500:1 (Ca:TP). Amendments were added to the DSW 161 162 and mixed rapidly (10 min at 100 rpm) using a jar test flocculator immediately prior to application to runoff boxes. The temperature of the laboratory in which the 163 experiments were conducted was approximately 10 °C. Two replicates of each 164 165 treatment were subject to rainfall at a time interval between treatment application and rainfall of either 12, 24 or 48 h, giving a total of 30 runoff boxes (5 treatments x 3 166 time intervals x 2 replicates). The limited replication involved (n=2) was due to 167 limited availability of soil samples from the study site and, in order to take this into 168 account, the formal inference was conducted in an exploratory manner rather than as 169 170 evidence of cause and effect as would be normal for a designed experiment. Relationships identified were taken as indicating association only. 171 172 173 2.3 Runoff boxes and rainfall simulation set-up

174

This experiment used two laboratory runoff boxes, 1-m-long by 0.225-m-wide by 175 176 0.05-m-deep with side walls 0.025 m higher than the soil surface and 0.005-m-177 diameter drainage holes each located at 0.3-m-intervals along the base (after Regan et 178 al., 2010). The runoff boxes were positioned at an angle of 5 degrees to the horizontal and all surface runoff was collected with an overflow weir, positioned at the same 179 level as the soil surface, and a funnel. Cheese cloth was placed at the base of each 180 181 runoff box before placing the soil cores. Intact grassed cores from the study site were transported to the laboratory and stored at 11°C in a cold room prior to testing. All 182 183 experiments were carried out within 14 d of soil core collection. Immediately prior to 184 the start of each runoff box experiment, the cores were trimmed and placed in the runoff box. Each core was butted against its adjacent core to form a continuous 185 186 surface. Molten candle wax was used to seal any gaps between the cores and the sides of the runoff box. 187

188

The packed cores were then saturated until ponding occurred on the soil surface using a rotating disc, variable-intensity rainfall simulator (after Williams et al., 1997), and left to drain for 24 h before the experiment commenced. All soils were approximately at field capacity prior to the start of each experiment. Dairy soiled water and amended DSW were applied to the surface of the intact grassland soil in runoff boxes at a rate equivalent to 50 m³ ha⁻¹, the legal limit for application in any 42-d period. The DSW and chemically-amended DSW were spread evenly across the soil surface.

196

197 The rainfall simulator consisted of a single 1/4HH-SS14SQW nozzle (Spraying

198 Systems Co., Wheaton, IL) attached to a 4.5-m-high metal frame, and calibrated to

achieve an intensity of 10.5 ± 1 mm h⁻¹ (rainfall with a return period of about 3 y in

200	Ireland; Met Eireann, 2012) and a droplet impact energy of 260 kJ mm ⁻¹ ha ⁻¹ at 85 %
201	uniformity. During each rainfall simulation, the drainage holes were sealed to
202	replicate conditions of saturation excess runoff. Significant surface runoff (determined
203	once consistent, continuous droplets of water flowed from the flume) typically began
204	within 20-30 min. Runoff was collected for this initial period and then 5, 10, 15, 20,
205	25, 30, 40, 50 and 60 min thereafter. The volume of water collected during each time
206	interval was measured and collection of runoff ceased at the 60-min sampling interval.
207	The water used in the rainfall simulations was tap water, which had a DRP
208	concentration of less than 0.005 mg L ⁻¹ , a pH of 7.7 \pm 0.2 and an electrical conductivity
209	(EC) (measured using a LF 96 Conductivity Meter, WTW, Germany) of 0.435 dS m^{-1} .
210	The calcium (Ca^{2+}) concentration of the tap water, measured by atomic absorption
211	spectrophotometry (AAS), was 3.11 mg L^{-1} and was higher than the annual mean
212	concentration of Ca^{2+} in rainwater (0.85 mg L ⁻¹) measured between 1992 and 1994 for
213	Ireland (Jordan, 1997). This may have impacted somewhat on measurements, but
214	owing to availability, the same source has been used in similar experiments (Regan et
215	al., 2010). Water pH was measured immediately prior to each event using a pH and
216	electrical conductivity meter.

2.4 Runoff analysis

Immediately after collection, runoff water samples were passed through a 0.45 µm
filter and a subsample was analysed colorimetrically for DRP. A second filtered
sample was analysed for TDP using acid persulphate digestion (APHA, 2005),
followed by spectrophotometry using a nutrient analyser (Konelab 20, Thermo
Clinical Labsystems, Finland) after Murphy and Riley (1962). Unfiltered runoff water

225	samples were also collected and TP was measured using acid persulphate digestion,
226	followed by spectrophotometry. Total P comprised PP and TDP, with TDP consisting
227	of DRP and DUP. Particulate phosphorus was calculated by subtracting TDP from
228	TP. Suspended solids were determined for all samples by vacuum filtration of well-
229	mixed runoff water through Whatman GF/C (pore size: $1.2 \ \mu m$) filter paper. All
230	samples were tested in accordance with the Standard Methods (APHA, 2005). All
231	reported concentrations in this paper were flow-weighted mean concentrations
232	(FWMC) calculated based on surface runoff volume, collected in each time interval,
233	and the measured concentrations.
234	
235	2.5 Statistical Analysis
236	
237	The analysis was conducted as an ANOVA of the factorial combinations of treatment
238	and time. There were five levels of treatment (control, unamended DSW, lime, $FeCl_2$
239	and alum) and three levels of the time factor (12, 24 and 48 h). Due to the limited
240	replication, it was not feasible to account for all structural effects in the experiment.
241	Large differences in variance between treatments were taken into account in a
242	heterogeneous variance mixed model using the Mixed procedure of SAS (2009). The
243	repeated measures aspect of the experiment was not modelled. Tukey adjustments
244	were made to account for multiplicity in comparison of means. Pearson product-
245	moment correlations were used to examine association between PP and SS. The

relationship between SS and volume was examined using analysis of covariance,

- 247 regressing SS and other relevant variables on volume. Residual checks showed no
- evidence that the distributional assumptions of the analysis were not met.
- 249

3. Results and Discussion

251

252 **3.1 Soil and dairy soiled water characterisation**

253

254 The characteristics of the soil and DSW used in this study are tabulated in Tables 1 and 2, respectively. The grassland sandy loam soil used in this study was a well-255 drained sandy loam Acid Brown Earth (WRB classification: Cambisol). The soil pH, 256 257 at 6.4, was optimal for grass growth and P plant-availability. It had a relatively low Morgan's P concentration of 2.8 mg L^{-1} . This soil would be classified as an Index 1 258 soil in the Irish grassland soil P index system (SI 610 of 2010) and would therefore 259 not be perceived as being a high risk for P loss to water in terms of its P content. 260 Agronomic advice to increase grass production would be to apply additional P to this 261 soil in order to build up soil reserves of P. This soil could receive P at rates up to a 262 maximum of 49 kg available-P ha⁻¹ y⁻¹. In this study, based on the P content of the 263 DSW (Table 1) and an application rate of 50 m³ ha⁻¹, the soil was loaded at 0.7 kg P 264 $ha^{-1}v^{-1}$. 265

266

Dairy soiled water used in the study had a DM content of 0.2 % (Table 2). This would 267 268 place it within the legally defined threshold for soiled water of 1 % DM and at the more dilute end of the range of DSW concentrations found on Irish farms (average of 269 0.5 %; Minogue et al., 2010). In terms of P content (14.2 mg TP L^{-1}), this DSW was 270 also relatively dilute (average of 80 mg L⁻¹; Minogue et al., 2010). The proportion of 271 TP as DRP, at 51 %, was typical of DSW composition on Irish dairy farms. The bulk 272 of the remaining TP was likely in organic form. The N content (730 mg total nitrogen 273 (TN) L^{-1}) of this DSW was fairly typical (average of 587 ± 536 mg L^{-1} : Minogue et 274

al., 2010), but the proportion of TN as NH₄-N was relatively low (15 %, compared to
36 %).

277

278 **3.2 Phosphorus loss in runoff**

279

280 The FWMC of P speciation for the control (grass only), DSW only, and amended

281 DSW treatments for all three rainfall events are presented in Figure 1a. The

interaction of time and treatment was significant for DRP, TP, PP and SS (P < 0.001).

283 Generally, the highest concentrations of P in runoff occurred during the first 20 min of

the commencement of runoff, before reaching steady state. Mean TP concentrations in

surface runoff from the control ranged from 202 μ g L⁻¹ (0.03 kg ha⁻¹) to 486 μ g L⁻¹

 $(0.09 \text{ kg ha}^{-1})$ (Figure 1). Most of this P was present in dissolved un-reactive form (44

%) or particulate form (36%), whereas only 20% was in dissolved reactive form. The

results indicated that P concentrations in surface runoff water from a low P index soil

such as this may exceed the maximum allowable concentration (MAC) for discharge

to receiving waters of 0.03 mg L^{-1} (2000/60/EC: Council of the European Union,

2000), despite its low P content.

292

It must be borne in mind that this experiment only assessed P loss in runoff from an isolated 0.225 m² area of soil with a relatively steep slope, relatively intense and persistent rainfall, and with no capacity to drain water vertically (saturation excess runoff). In the field, rainfall would typically be less intense and persistent, and the soil would typically have the capacity for vertical drainage. Therefore, the experiment replicated a worst-case scenario in terms of potential incidental P loss from soil. In small-scale experiments, the attenuation of contaminants during transport is limited.

Therefore, while P losses from the runoff boxes may be used to judge the relative
merit of chemical amendments and the effects of time interval, they are not
quantitative measures of P loss to surface water bodies that might be expected in the
landscape.

304

Application of un-amended DSW increased concentrations of TP in runoff significantly (Figure 1) to 1.6 mg L⁻¹ (total loss of 0.3 kg ha⁻¹) for the 12-h rainfall event (p<0.0001), 0.96 (total loss of 0.18 kg ha⁻¹) for the 24-h event (p<0.008) and 0.94 mg L⁻¹ (total loss of 0.16 kg ha⁻¹) for the 48-h event (p<0.0017). This highlights the potential importance of incidental P losses when heavy rain follows soon after application of a P source to soil, with TP losses being over three times greater than the control at 12 h.

312

Total P concentrations in runoff from both the control and unamended DSW 313 314 treatments tended to decrease with time interval between treatment application and rainfall (Figure 1). This decrease in concentration was coincident with a decrease in 315 runoff volume (e.g. from 4,057 to 3,414 to 3,266 ml for the 12, 24 and 48 h time 316 intervals, respectively, for the control treatment). It would appear that, due to a longer 317 318 time draining before rainfall was initiated (36, 48 and 60 h after saturation for the 12, 319 24 and 48 h time intervals, respectively), antecedent soil moisture conditions were different, giving the longer time interval soils a greater capacity to infiltrate and store 320 321 rainfall. The higher soil water content and lower infiltration and storage capacity of 322 the 12 h time interval soils may have forced more of the water to flow directly over the soil surface, mobilising P that is typically concentrated in the upper surface of 323 grassland soils. The soil used in the runoff boxes came from the top 5 cm of the soil 324

profile and will have a higher concentration than the top 10 cm of soil as shown in
Table 1. This mechanism would be consistent with greater concentrations of PP in
runoff from the 12 h treatment (Figure 1) as PP loss is associated with water flow over
the soil surface and it is the uppermost surface soil that influences the concentration of
P in surface runoff most (Sharpley, 1980).

330

331 As the proportional decrease in P concentrations with time interval was similar for both the control and the unamended DSW treatments, due to antecedent soil moisture 332 333 conditions, it seems unlikely that there was any effect of time interval between DSW application and rainfall on P loss. This suggests that the measures in SI 610 of 2010 334 restricting DSW application when heavy rain is forecast within 48 h are prudent to 335 336 decrease the potential for pollution of receiving waters. It is, of course, likely that as 337 the time interval between application and heavy rain widens further, P losses are likely to decrease due to further interaction with the soil and plant uptake. 338

339

As with the control, DRP concentrations in runoff from the unamended DSW 340 341 treatment were relatively low (Figure 1). Despite DRP making up 51 % of TP in the DSW, most of the increase in TP concentrations relative to the control was due to 342 increased PP and DUP loss (Figure 1). Particulate P constituted 75 % of the total mass 343 344 of P released over the three rainfall events. Usually the predominance of dissolved forms of P in runoff reflects particle retention by the vegetation and limited erosion 345 due to vegetative cover and the absence of livestock (Haygarth et al., 1998; Hart et al., 346 347 2004). It is likely that DRP in DSW was sorbed rapidly by the soil (Maguire et al., 2001), while PP may have been more susceptible to mobilisation and loss at the soil 348 349 surface (Regan et al., 2010). Given that the PP content of DSW is typically quite low

350 (Minogue et al., 2010), it would seem likely that DRP added in the DSW may have351 sorbed to soil particles which were then lost in runoff.

352

353	Dissolved un-reactive phosphorus concentrations in runoff from the unamended DSW
354	treatment were also higher than the control. This probably reflects mobilisation of
355	DUP added in the DSW (Brennan et al., 2011). The DUP fraction is generally
356	considered to consist largely of dissolved organic P (Toor et al., 2003; Murphy et al.,
357	2010). This organic P is generally not as bioavailable as reactive forms, but can
358	become bio-available and contribute to eutrophication in receiving water bodies
359	through chemical or enzymatic hydrolisation (Correll, 1998)
360	
361	All three amendments to DSW were effective in decreasing P concentrations in runoff
362	relative to the unamended DSW treatment (Figure 1). Lime decreased the FWMC of
363	TP (average across the three rainfall events) by 66 % (p< 0.07), whereas alum and
364	$FeCl_2$ were more effective, decreasing concentrations by 84 (p<0.005) and 83 $\%$
365	(p<0.007), respectively. For all three amendments, most of the decrease in TP loss
366	was due to a decrease in PP and DUP loss relative to the unamended DSW treatment.
367	This is most likely due to the fact that all three amendments release effective
368	flocculants (Ca^{2+} , Fe^{2+} and Al^{3+}) into the DSW solution, leading to flocculation and
369	removal of PP and DUP from suspension (Brennan et al., 2011). These flocculants
370	may also aid adhesion of particles in the DSW to soil particles and adhesion of soil
371	particles themselves, further decreasing P losses in runoff (Brennan et al., 2011).
372	
373	Lime was less effective than the other two amendments, largely due to high losses of

374 DUP relative to both the unamended DSW treatment and the control. The lime

amendment increased the pH of surface runoff, giving an average pH of 8.9±0.13 375 across the three rainfall events, while the other amendments produced surface runoff 376 with a pH similar to that of the unamended DSW treatment (6.9 ± 0.14) . Liming is 377 378 often associated with an initial flush of soluble organic matter and dissolved organic P release that can increase P losses in runoff or leachate, at least temporarily (Murphy, 379 2007). At the higher pH of the limed DSW treatment, organic P can be more soluble 380 381 due to desorption or dispersion of organic matter, or release of organic P through increased microbial activity (Hannapel et al., 1964). Dissolved un-reactive 382 383 phosphorus made up a greater proportion of TP for the lime amendment than the other two chemically amended DSW treatments. Most of the DUP in runoff is likely to be 384 dissolved organic P. Lime also increased DRP losses relative to the control and 385 386 unamended DSW treatment for the 24-h rainfall event. Such inconsistent effects of 387 lime on DRP solubility have been found by others (Murphy and Stevens, 2010). 388 389 Alum and FeCl₂ were also more effective than lime in decreasing PP loss (p<0.05) despite the fact that the Ca:TP stoichiometric ratio in the lime-amended DSW 390

391 (2,500:1) was much greater than the Al:TP ratio in the alum treatment (8.8:1) and the

Fe:TP ratio in the FeCl₂ treatment (200:1). This is likely due to the lower solubility of

393 CaCO₃ in water (15 mg L^{-1}) than aluminium sulfate (364,000 mg L^{-1}) and iron

chloride (920,000 mg L^{-1}), delivering concentrations of flocculant four orders of

magnitude less. In a desk-scale experiment examining the feasibility of alum, FeCl₂

and lime to decrease P loss from land application of DSW, Fenton et al. (2011) found

that alum was the most feasible, followed by $FeCl_2$ and lime. In that study, assuming

398 50 L was produced per cow for 42 weeks of lactation, it would cost approximately

400 impact on this cost. The current study examined the same amendments and found the 401 same order of amendment efficacy as the smaller scale study.

402

403 Amendment of DSW with FeCl₂ resulted in low DRP concentrations (Figure 1). The Fe:TP ratio in the FeCl₂-amended DWS was much greater than the Al:TP ratio in the 404 alum-amended DSW, and FeCl₂ also has a greater solubility than alum. This likely 405 accounted for the marked effect on DRP solubility relative to the alum amendment. 406 Interestingly, DRP losses increased with time interval between application and rainfall 407 408 for the alum-amended DSW treatment (Figure 1). Over the three rainfall events, DRP comprised 66 % of the TP in runoff from alum-amended DSW. A similar trend was 409 found by Brennan et al. (2011) for alum-amended dairy slurry. This may be due to the 410 411 "uncommon ion effect" or "salt effect" of alum-amended DSW on the solubility of 412 inorganic phosphates in the soil or to displacement of inorganic orthophosphate anions on soil sorption sites by sulphate anions (Beltman et al., 2000). At 12 h DRP 413 414 concentration in runoff from the alum treatment was less than the control or unamended DSW treatments, indicating that Al had helped to bind soil and DSW 415 416 DRP through precipitation and/or co-sorption. However, with greater time to react with the soil, the common ion or sulphate displacement effect of the alum amendment 417 418 may have counteracted this, leading to increased DRP solubility and losses in runoff. 419

- **3.3 Suspended sediment in runoff** 420

421

Suspended sediment flux from the control treatment ranged from 13.1 kg ha⁻¹ for the 422 12 h time interval to 10.9 kg ha⁻¹ for the 48 h time interval, decreasing with increasing 423 time interval (Figure 2). Similar findings were made by other researchers (Regan et 424

425 al., 2010). The results of the present study were consistent with wetter antecedent soil 426 conditions for the 12 h time interval, leading to more flow over the soil surface, 427 increasing the SS flux in runoff. Analysis of covariance for the relationship between 428 SS and flow volume showed evidence of a linear relationship, but with the slope of 429 the relationship varying between treatments (p=0.018). The slopes for alum and FeCl₂ 430 were not statistically significant, but for DSW, grass and lime, the slopes were all 431 negative with p<0.001.

432

434 (Figure 2). As the DM content of the DSW was only 0.2 %, it had little impact on

sediment release in surface runoff. The fact that PP losses increased substantially

436 following unamended DSW application (Figure 1), despite little change in SS loss,

437 suggests that DRP in the DSW was rapidly sorbed to surface soil particles which were 438 then mobilised in runoff, as has been suggested above. The correlation between the SS 439 and PP was very weak (the R^2 value was approximately 0.15).

440

441 The chemical amendments were effective at decreasing SS losses from the soil, with decreases of 64 %, 35 % and 34 %, relative to the unamended DSW treatment, for 442 443 alum, lime and FeCl₂, respectively, across the three rainfall events. As the largest part 444 of TP loss from the unamended DSW treatment was PP, this would account for a large portion of the impact of the chemical amendments on P loss, consistent with the 445 observed decrease in PP loss. The fact that alum was most effective at decreasing SS 446 loss, and also PP loss, is consistent with this interpretation. As has been proposed, this 447 is likely due to the release of flocculants (Ca^{2+} , Fe^{2+} and Al^{3+}) into the DSW solution 448 (Brennan et al., 2011), removing PP from suspension and also aiding adhesion of 449

450 DSW particles and soil particles, thereby decreasing their susceptibility to loss in451 runoff.

452

453 **4.** Conclusions

454

The observed P and sediment losses from this low-P grassland soil following application of unamended DSW indicate the importance of incidental P losses when heavy rain follows shortly after P application and that the current restriction in Ireland of DSW application within 48 h of forecast heavy rainfall is prudent. However, it must be borne in mind that P losses from a runoff box experiment such as this are not quantitative measures of P loss to surface water bodies that might be expected in the landscape for a range of reasons.

462

While all three amendments to DSW were effective in decreasing P and SS losses in runoff relative to the unamended DSW treatment, overall, alum was the most effective. The efficacy of these amendments would need to be assessed in field trials and a cost-benefit analysis conducted to further examine whether they could be practically implemented on farms.

468

469 Acknowledgements

470

This study was funded under the Department of Agriculture, Fisheries and Food underthe Research Stimulus Programme 2007 (RSF 07 525).

473

474

475	References

477	APHA. Standard methods for the examination of water and wastewater. American
478	Public Health Association (APHA). Washington: APHA; 2005.
479	
480	Beltman B, Rouwenhorst TG, Van Kerkhoven MB, Van Der Krift T, Verhoeven JTA.
481	Internal eutrophication in peat soils though competition between chloride and sulphate
482	with phosphate for binding sites. Biogeochemistry 2000;50;183-94.
483	
484	Brennan RB, Fenton O, Grant J, Healy MG. Impact of chemical amendment of dairy
485	cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a
486	grassland soil. Sci Tot Env 2011;409:5111-8.
487	
488	British Standards Institution. British standard methods of test for soils for civil
489	engineering purposes. Determination of particle size distribution. BS 1377. London:
490	BSI; 1990a. p2.
491	
492	British Standards Institution. Determination by mass-loss on ignition. British standard
493	methods of test for soils for civil engineering purposes. Chemical and electro-
494	chemical tests. BS 1377. London: BSI; 1990b. p3.
495	
496	Callahan MP, Kleinman PJA, Sharpley AN, Stout WL. Assessing the efficacy of
497	alternative phosphorus sorbing soil amendments. Soil Sci 2002;167:539-47.
498	

499	Correll DL.	The role	of phosphorus	in the eu	trophication	of receiving	waters: a

500 review. J Environ Qual 1998;27:261-6.

501

- 502 Council of the European Union. Water Framework Directive 2000/60/EC establishing
- a framework for community action in the field of water policy. Available on 25th
- 504 March 2012 at: <u>http://www.wfdireland.ie</u>.

505

- 506 Di HJ, Cameron KC, Moore S, Smith NP. Nitrate leaching and pasture yields
- 507 following the application of dairy shed effluent or ammonium fertilizer under spray or
- flood irrigation: results of a lysimeter study. Soil Use Man 1998;14:209-14.

509

- 510 Edwards DR, Moore PA, Workman SR, Bushee EL. Runoff of metals from alum-
- treated horse manure and municipal sludge. J. Am. Water Res. Assoc. 1999;35:155-
- 512 165.
- 513
- 514 Fenton O, Serrenho A, Healy MG. Evaluation of amendments to control phosphorus

515 losses in runoff from dairy-soiled water. Wat, Air Soil Poll 2011;222:185-94.

516

- 517 Hannapel RJ, Fuller WH, Fox RH. Phosphorus movement in a calcareous soil: II. Soil
- 518 microbial activity and organic phosphorus movement. Soil Sci 1964;97:421-7.

519

Hart MR, Quin BF, Nguyen ML. Phosphorus runoff from agricultural land and direct
fertilizer effects. J Environ Qual 2004;33:1954–72.

522

523 Haygarth PM, Hepworth L, Jarvis SC. Forms of phosphorus transfer in hydrological

524	pathways	from soil	under	grazed	grassland.	Eur J	Soil S	Sci 1998	;49:65-7	12.
					0					

- Jordan, C. Mapping of rainfall chemistry in Ireland 1972-1994. Biol and Environ:
 Proceed Royal Ir Acad 1997; 97B: 53-73.
- 528
- 529 Kalbasi M, Karthikeyan KG. Phosphorus dynamics in soils receiving chemically
- treated dairy manure. J Environ Qual 2004;33:2296-2305.

531

- 532 Maguire RO, Foy RH, Bailey JS, Sims JT. Estimation of the phosphorus sorption
- 533 capacity of acidic soils in Ireland. European J Soil Sci 2001;52:479-87.

534

- 535 Martínez-Suller L, Provolo G, Carton O, Brennan D, Kirwan L, Richards KG. The
- composition of dirty water on dairy farms in Ireland. Irish J Ag Food Res 2010;49:67-
- 537 80.
- 538
- 539 Met Eireann. Available on 25th March 2012 at: <u>http://www.met.ie/climate-</u>
- 540 <u>ireland/rainfall.asp?prn=1</u>

541

542 Minogue D, Murphy P, French P, Coughlan F, Bolger T. Characterisation of soiled

543 water on Irish dairy farms. Adv Anim Biosci 2010;1:279-9.

- 545 Minogue D, French P, Bolger T, Murphy P. The fertiliser potential of dairy soiled
- 546 water in temperate grasslands. Agricultural Research Forum 2011, Tullamore, Ireland:
- 547 1.
- 548

549	Moore PA, Daniel TC, Gilmour JT, Shreve BR, Edwards DR, Wood BH. Decreasing
550	metal runoff from poultry litter with aluminum sulphate. J Environ Qual 1998;27:92-
551	9.
552	
553	Moore PA, Edwards DR. Long-term effects of poultry litter, alum-treated litter and
554	ammonium nitrate on aluminium availability in soils. J Environ Qual 2005;34:2104-
555	11.
556	
557	Morgan MF. Chemical soil diagnosis by the universal soil testing system.
558	Connecticut. New Haven: Connecticut agricultural Experimental Station Bulletin 450;
559	1941.
560	
561	Murphy J, Riley JP. A modified single solution for the determination of phosphorus in
562	natural waters. Analytica Chemica Acta 1962;27:31-6.
563	
564	Murphy PNC. Lime and cow slurry application temporarily increases organic
565	phosphorus mobility in an acid soil. Euro J Soil Sci 2007;58:794-801.
566	
567	Murphy PNC, Stevens RJ. Lime and gypsum as source measures to decrease
568	phosphorus loss from soils to water. Water, Air Soil Poll 2010; 212:101-11.
569	
570	Novak JM, Watts DW. An alum-based water treatment residual can reduce extractable
571	phosphorus concentrations in three phosphorus-enriched coastal plain soils. J Environ
572	Qual 2005; 34:1820-7.
573	

574	Regan JT, Rodgers M, Healy MG, Kirwan L, Fenton O. Determining phosphorus and
575	sediment release rates from five Irish tillage soils. J Environ Qual 2010; 39:1-8.
576	
577	Ryan M, Brophy C, Connolly J, McNamara K, Carton O. Monitoring of nitrogen
578	leaching on a dairy farm during four drainage seasons. Ir J Ag and Food Res
579	2006;45:115-34.
580	
581	S.I.610. European Communities (Good Agricultural Practice for Protection of Waters)
582	Regulations 2010. Available on 25th January 2011 at:
583	http://www.environ.ie/en/Legislation/Environment/Water/FileDownLoad,25133,en.pd
584	<u>f</u> .
585	
586	Sharpley AN. The effect of storm interval on the transport of soluble phosphorus in
587	runoff. J Environ Qual 1980;9:575-8.
588	
589	Sharpley A, Tunney H. Phosphorus research strategies to meet agricultural and
590	environmental challenges of the 21st century. J Environ Qual 2000; 29:176-81.
591	
592	Toor GS, Condron LM, Di HJ, Cameron KC, Cade- Menum BJ. Characterisation of
593	organic phosphorus in leachate from a grassland soil. Soil Biol and Biochem 2003;
594	35:1317-23.
595	
596	Torbert HA, King KW, Harmel RD. Impact of soil amendments on reducing
597	phosphorus losses from runoff in sod. J. Environ. Qual. 2005;34:1415-1421.
598	

599	Williams JD, Wilkins DE, McCool DK, Baarstad LL, Klepper BL, Papendick RI. A
600	new rainfall simulator for use in low-energy rainfall areas. Appl Eng Agric 1997;
601	14:243-7.
602	
603	Withers PJA, Bailey GA. Sediment and phosphorus transfer in overland flow from a
604	maize field receiving manure. Soil Use Man 2003; 19: 28-35.
605	
606	Woodard KR, French EC, Sweat LA, Graetz DA, Sollenberger LE, Macoon B et al.
607	Nitrogen removal and nitrate leaching for forage systems receiving dairy effluent. J
608	Environ Qual 2002;31:1980-92.
609	
610	Zvomuya F, Rosen CJ, Gupta SC. Phosphorus sequestration by chemical amendments
611	to reduce leaching from wastewater applications. J Environ Qual 2006;35:207-15.

Table 1. Physical and chemical characterisation (± standard deviation) of the grassland soil used in this study (upper 10 cm).

	Location	Soil type	Water extractable phosphorus, WEP	Morgan's Phosphorus, Pm	рН	Sand	Silt	Clay	Organic matter, OM
			mg kg ⁻¹	mg L ⁻¹				%	
	Co. Galway	Acid Brown Earth	2.3 ±0.4	2.8 ±0.5	6.4 ±0.3	57± 5	29 ±4	14 ±2	5 ±2
		Cambisol (WRB Classification)							
614									
615									

		TN	NH ₄ -N	NO ₃ -N	TAN	TP	DRP	pН	DM
		$mg L^{-1}$						%	
								-	
	Concentration	730	110	2.3	256	14.2	7.3	7.9	0.2
	\pm Standard deviation	212	35	0.5	48	0.5	0.4	0.0	0.1
618 619 620	¹ TN = total nitrogen; N = total ammoniacal N; T = dry matter.	$H_4-N = tc$	= ammon otal phosp	ium-nitro bhorus; Dl	gen; No RP = to	O₃-N = tal read	nitrate ctive ph	-nitro lospho	ogen; TAN orus; DM
621									
622									
623									
624									
625									
626									
627									
628									
629									
630									
631									
632									
633									
634									
635									
636									
637									
638									
639									

Table 2 Water quality characterisation¹ of dairy soiled water used in study (n=3).

- **Figure 1.** Flow-weighted mean concentrations (mg L^{-1} ; a) and flux (kg ha⁻¹; b) of
- 641 dissolved reactive phosphorus (DRP), particulate phosphorus (PP) and dissolved un-
- reactive phosphorus (DUP) in surface runoff at time intervals of 12, 24 and 48 **h** after
- 643 DSW application to a grassland soil.

646 b)

647

Figure 2. Flow-weighted suspended sediment (mg L^{-1} ; top graph) and flux (kg ha⁻¹;

- bottom graph) in surface runoff at time intervals of 12, 24 and 48 **h** after DSW
- 651 application to a grassland soil.

656