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Abstract 
 

Flooding already imposes substantial costs to the economy. Costs are expected to rise 
in future, both as a result of changing weather patterns due to climate change, but also 
because of changes in exposure to flood risk resulting from socio-economic trends 
such as economic growth and urbanisation. Existing cost estimates tend to focus on 
direct damages, excluding potentially important indirect effects such as disruptions to 
transport and other essential services. This paper estimates the costs to commuters as 
a result of travel disruptions caused by a flooding event. Using Galway, Ireland as a 
case study, the commuting travel times under the status quo and during the period of 
the floods and estimated additional costs imposed, are simulated for every commuter. 
Results show those already facing large commuting costs are burdened with extra 
costs with those in rural areas particularly vulnerable. In areas badly affected, extra 
costs amount to 39% of earnings (during the period of disruption), while those on 
lower incomes suffer proportionately greater losses. Commuting is found to have a 
regressive impact on the income distribution, increasing the Gini coefficient from 
0.32 to 0.38. 
 
JEL codes: Q54, R11, R41  
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1. Introduction 

Beginning with Storm Desmond in early December and followed by storms Eva and 
Frank, the winter of 2015/16 represented the wettest winter on record for Ireland. 
Rainfall levels in some areas were two and a half times the seasonal average, with 
over half of all stations recording their wettest winter on record (Met Éireann, 2016). 
Extensive flooding around the country caused widespread damage. Hundreds of 
homes and businesses were flooded, and thousands more were cut off by flood waters. 
Nationally, €1.8 million in humanitarian assistance was paid out to affected 
households; close to €1m to farmers; local authorities received special funding of 
€18m for clean-up costs; while damage to the road network was estimated at over 
€100m. In County Galway humanitarian assistance for 162 households totalled 
€256,000, clean-up costs €3.1m and 80 houses were inaccessible. Aside from 
damages, the flooding also caused substantial disruptions to everyday life (350,000 
customers suffered disruptions to electricity supply, and 23,000 households were 
placed on boil water notices). The flooding also resulted in substantial travel 
disruptions; in particular as a result of flooding on the road network (National 
Directorate for Fire and Emergency Management, 2016). For many areas of County 
Galway this was the second major flooding event since 2009 (OPW, 2016; OPW, 
2009). 

In an Irish context climate change is expected to bring more extreme weather 
conditions and an increased likelihood of river and coastal flooding (Sweeney et al., 
2008). While Storm Desmond was considered a 1-in-100 year event, a near-real time 
attribution analysis found that events such as Storm Desmond. are now a 1-in-72 year 
event (van Oldenborgh et al., 2015). Guerreiro et al. (2018) analysing changes in 
flooding, droughts and heat waves in 571 European cities using climate models found 
Great Britain & Ireland to have some of the highest projected increase in flooding. In 
the high impact scenario the cities of Cork and Waterford see increases above 80%. 
To manage this flood risk effectively more information about the economic costs of 
flooding and its impact on economic activities in the short, medium and long term is 
required (OECD 2014, IPCC 2014). Furthermore this information can help inform 
policy on the impact of flooding on income groups and inequality (Walker and 
Burningham, 2011). 

With further warming (NOAA, 2017), flood risk will likely increase in many areas, 
both as a result of more intense precipitation events, and as a consequence of sea level 
rise  (IPCC, 2012; IPCC, 2013). For example, according to the Intergovernmental 
Panel on Climate Change (IPCC), there is very high confidence that coastal and low-
lying areas will increasingly experience adverse impacts such as submergence, 
coastal flooding, and coastal erosion as a result of projected sea level rise 
throughout the 21st century and beyond (IPCC 2014). Recent updates of projections 
for sea level rise have tended to involve upward revisions to expectations – for 
example, estimates for global mean sea level rise by 2100 increased from a projected 
18 to 59 cm in the IPCC’s fourth assessment (IPCC, 2007), to 26 to 98 cm in the fifth 
assessment (IPCC, 2013). 
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According to Dawson et al. (2018), infrastructure investments, which are typically 
large (costly) and lack flexibility once built, are also sensitive to climate. In particular 
they note that gradual shifts in long-term climate “will reduce the capacity and 
efficiency of some infrastructure”, while “increases in the frequency of severe 
weather events, such as flooding … will lead to increased disruption to infrastructure” 
(p.2). As a result, these authors suggest that “assessing climate risks to infrastructure 
must therefore be a priority”, while also noting that currently “very few assessments 
prioritize and rank the risks identified, even in relative terms” (p.5). 

The UK’s Climate Change Risk Assessment (CCRA, 2012) also highlights risks to 
the transport network from flooding, in the form of disruptions to transport services, 
as well as the risk that flooding can compromise the integrity of roads and bridges, for 
example, through scouring. Bad weather conditions can also impact on an individual’s 
ability to carry out daily activities. For example, Marsden et al. (2016) in a six city 
UK survey found 55% of respondents reported bad weather impacting on daily 
activities at least once in the last year with 30% reporting bad weather frequently 
impacting on work. 

When measuring the impacts of an extreme weather event, there is a focus on the 
direct costs (destruction of assets and damage to buildings and infrastructure) (FEMA, 
2001). In contrast the value of indirect costs (Hallegatte and Przyluski, 2010) or 
higher-order effects (Rose, 2004), for example costs borne by the general public due 
to infrastructure damage, are less frequently quantified (OECD, 2014). Input-output 
models (Cochrane, 1975; Rose et al., 1997) or Computable General Equilibrium 
models (Tatano and Tsuchiya, 2008; Partridge and Rickman, 1998) may be used to 
measure both the direct and indirect costs. However, high-order effects can be 
difficult to verify and require complicated economic models (Rose, 2004). High-order 
effects such as commuting costs as a result of transport disruption can be large 
(Gordon et al., 1998) and are worth consideration despite the difficulty of 
measurement. One study estimated the cost of flood related disruption to major roads 
at peak times in London of at least €146,000 per hour (Arkell and Darch, 2006). 

The blocking or closure of access routes can add not only extra time and expense to 
the daily commute but also unwarranted stress and uncertainty (Thieken, 2016). 
Pregnolato et al. (2017a) discovered that travel times may increase by more than 50% 
due to extreme events. Road closures may cause congestion on segments of road 
which otherwise would not experience congestion (non-recurrent congestion). The 
less control commuters have over aspects such as traffic congestion and time pressure, 
the more stressful commuting can be (Lyons and Chatterjee, 2008). Over time, of 
course, commuters can adapt to these new road conditions and save time (Zhu et al., 
2010) – for example, more flexible working arrangements might be used to help 
alleviate this stress (Lucas and Heady, 2002).  

Research in relation to the impact of climate change on transport disruptions tend to 
focus on commuting patterns (Arkell and Darch, 2006; Jenelius and Mattsson, 2012; 
Jenelius and Mattsson, 2015; Pregnolato et al., 2017a; Pregnolato et al., 2017b), 
resilience of transport networks (Esposito, 2016; Jaroszweski et al., 2014; 
Kermanshah et al., 2014) and journey times (Pregnolato et al., 2016). This paper 
builds on the literature by utilising a real-life dataset as opposed to predictive flood 
hazard mapping. Georeferenced flooded road data collected by Galway county 
council during the 17 day period of disruption is used. This data highlights how Big 
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Spatial Data shared through open data initiatives can be utilised in a meaningful 
manner (Harris et al., 2017). While measuring the disruption is not novel in itself this 
aspect is added to by monetising the disruption and calculating the impact on income 
and inequality. Previous studies focusing on the impact of flooding on socio-
demographic and economic characteristics are hampered by a lack of income data at a 
detailed spatial scale (Ford et al., 2015a).  

Any disruption to commuting will impact on an individual’s level of welfare. Welfare 
may be defined using monetary and non-monetary aspects (Barr, 1998). An 
individual’s welfare can be increased if their potential to consume is increased. 
Anything that increases that potential should be considered in a complete measure of 
welfare (Atkinson, 1983). The Stiglitz-Sen-Fitoussi Commission (2009) highlighted 
the need for a broadening of income measures to include non-market measures such 
as commuting. Monetary costs of commuting will depend upon the mode of transport 
and distance travelled. The time spent commuting will reduce the amount of leisure 
time available for other activities and therefore has an opportunity cost (Becker, 1965). 
Related to commuting is the importance of place. Where a person lives is a large 
determinant of whether they work, where they work and earnings. There will also be a 
trade-off between commuting and housing costs. Rural residents may trade-off lower 
housing costs for lower wages in local labour markets (Kain, 1962), whereas those 
who commute to urban labour markets trade-off higher wages for the disamenity of 
commuting (So et al., 2001). Rural areas are likely to be net senders of workers to 
urban areas, highlighting the potential disruption to businesses if workers are unable 
to travel due to transport disruptions (Hazans, 2004). Debionne et al. (2016) found in 
an examination of commuter exposure to a flooding event, that commuters with the 
longest commutes and residents of rural areas to be the most exposed. 

Commuting in Ireland involves substantial costs, in the form of the monetary costs of 
travel (ticket prices or the cost of fuel and other running costs for car drivers), as well 
as the welfare cost of the lost time spent commuting (Vega et al., 2016). Examining 
the welfare costs of commuting in Ireland, previous research estimated the combined 
commuting costs as equivalent to about 30% of daily wages for the average commuter 
in the commuter belt around Dublin, about 26% for the average commuter in Co. 
Galway and 20% in Co. Cork (see Vega et al., 2016). These costs reflect in part the 
heavy reliance on private car as mode of transport (76% in the Greater Dublin Area, 
95% elsewhere in the country), as well as recent patterns of spatial development such 
the increasing urban sprawl around Dublin into areas with poor public transport 
infrastructure. The very high levels of car dependence, especially outside of Dublin, 
also highlight the Irish economy’s vulnerability to disruptions to the road network. 

Using the output from a spatial microsimulation approach allows us to estimate 
welfare at a small area level (Chin and Harding, 2006). When there is a lack of 
income information in census data, spatial microsimulation enables us to overcome 
this difficulty, by making use of income data from surveys. Whereas census data 
contains spatial data, it contains no information on income. Survey data however 
contains income information but does not have a spatial component. Spatial 
microsimulation links the two data sources to overcome the lack of data in each 
(Morrissey and O'Donoghue, 2013). By combining this data with travel to work data 
it is possible to examine the socio-economic characteristics of commuters impacted 
by the disruption.  
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This study adds to existing literature which previously examined the vulnerability of 
socio-economic groups to extreme weather events (Masozera et al., 2007). Studies in 
this area tend to focus on the vulnerability to extreme weather events in developing 
versus developed nations (Ferreira et al., 2011; Jongman et al., 2015; Kahn, 2005). 
Winsemius et al. (2018) examined variation within country however lacked the high 
resolution spatial data to examine the relationship between poverty and exposure to 
flooding at a local level (Winsemius et al., 2018). In the analysis presented here, 
utilising detailed commuting and income data, the impact of flood disruption across 
income groups is calculated. 

Using Galway as a case study this paper measures the costs to commuters (monetary 
& time costs) associated with the flooding of the road network. Specifically, 
combining time-stamped road closure data collected by Galway County Council in 
the aftermath of Storm Desmond (December 2015) with the Open Street Map road 
network, data on individuals’ place of residence and place of work (CSO, 2011) and 
micro-simulated income data (O'Donoghue et al., 2012), this paper simulates the 
impact of storm Desmond on commuters in County Galway by measuring the 
additional commuting costs associated with the disruption. These costs are firstly 
measured in terms of additional commuting time and distance using an Origin-
Destination (OD) cost matrix. Information on commuting costs and estimates of VoT 
are then used to convert this additional commuting time into monetary and welfare 
effects. Analysing the additional commuting costs and commuters’ income (SMILE 
model), the impact on the income distribution is also measured.  

2. Data 

Commuting Data 

The Place of Work School Census of Anonymised Records (POWSCAR) dataset is a 
spatially referenced dataset which contains information for the entire population of 
the Republic of Ireland on their daily commute, collected as part of the national 
Census. This dataset has already been used to analyse traffic emissions (Brady and 
O’Mahony, 2011) traffic simulation (Suzumura et al., 2015) and mode choice for 
school children (Kelly and Fu, 2014). The data is made available as part of the Small 
Area Population Statistics (SAPS) – Census data aggregated to the electoral division 
(ED) level. There are 3,440 EDs in Ireland with a mean population of 1,345. 
Individuals in the POWSCAR data are coded to their place of residence ED as well as 
their place of work/school/college ED. The POWSCAR data contains information on 
the residential ED, work ED, journey time and travel mode. However, distance to 
work is missing. For this reason an OD cost matrix approach is used to estimate 
journey time and distance for each individual commuter in our study area. 

The modal share for County Galway illustrates the high reliance on the car (88% 
modal share) with only 12% of commuters using public transport daily; this is lower 
when only rural areas are considered (CSO, 2011). 

Study Area 

The impact of flooding is examined at the electoral division scale. The study area 
Galway City & County is subdivided into 234 electoral divisions. Table 1 shows a 
number of socio-economic and demographic indicators for the region. The city is 
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characterised by having a highly educated, working age population, whereas the 
county has both a high rate of elderly and youth dependency ratios compared to the 
national average. The unemployment rate for both city and county is below the 
national average although the at-risk of poverty is higher. 

Table 1: Regional Summary Statistics 
 Galway   

City County 
Greater 
Dublin Area National 

Old Dependency 12.6% 19.4% 15.2% 17.4% 

Youth Dependency 22.3% 35.0% 30.5% 31.9% 

Employment Rate 56.4% 60.3% 61.0% 58.8% 

Working Age Share 74.1% 64.8% 68.7% 67.0% 

Unemployment Rate 11.8% 12.4% 11.9% 12.7% 

No car households 23.7% 11.2% 20.7% 17.5% 

Tertiary Education Share 40.9% 36.6% 38.8% 36.2% 

At Risk Poverty 17.6% 17.5% 13.2% 16.0% 

Pop. Density 1,489 29 247 65 

Population 75,529 175,124 1,927,053 4,588,252 

% of Pop 1.6% 3.8% 42.0% 100.0% 
Source: SAPS 2011, SMILE 

Travel Costs 

An individual’s commuting costs consist of the costs associated with the mode of 
transport  and distance travelled and the time costs of the time forgone (Becker, 
1965). Generalised transport costs should provide a full measure where possible and 
capture time, travel cost, reliability and crowding benefits, where relevant (DfT, 
2014). 

Our Subjective Value of Travel Time (SVTT) values are from Vega et al. (2016). 
They estimated the SVTT for three subsample of the Irish population using data from 
the 2011 Census of Population of Ireland. The Value of Time (VoT) is the value the 
average person places on an hour of their time (Ford et al., 2015b). Overall, the SVTT 
for commuting in Galway is €21.2/hour for city commuters and €6.07/hour for rural 
areas. Vega et al. (2016) suggest the high value for the city may reflect heavy traffic 
congestion due to limited public transport options and in some cases, longer 
commuting distance. Overall, the values obtained from the analysis are in line with 
those used by the Department of Transport Common Appraisal Framework (DTTAS, 
2016). 

For direct travel costs estimates from the NTA (2011) are used. This measure per km 
considers the standing costs (insurance, car licence and depreciation) of owning a 
1200cc – 1500 cc car, petrol costs and any wear and tear to the vehicle. The public 
transport costs are calculated using the average cost for a single ticket including bus 
and rail. The costs are detailed in Table 2. These costs are broadly in line with the 
subsistence payments which public sector workers receive for ‘mileage’ (Impact 
Trade Union, 2009) and also the AA’s published annual cost of motoring (AA, 2016). 
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Table 2: Transport costs per km by mode 
Transport Costs per km € 

Car Costs 

Urban Area 0.62 

Work in Urban Area 0.63 

Rest 0.58 

Public Transport 

Galway 0.15 
Source: NTA (2011) 

The two cost functions are combined to get equation 1, which is total cost of a one 
way commute for a commuter. 

 

Where distance is from place of residence to place of work for commuter c, TC the 
transport cost per km for transport mode m in location p, Time the journey time from 
residence to work for commuter c, and VoT is the estimated value of time in location 
p. 

3. Spatial Microsimulation 

Aside from estimating the magnitude of the disruption to travel caused by flooding in 
terms of additional journey times and associated costs, this study examines how this 
burden is distributed across income groups. In order to understand how the additional 
costs imposed by flooding are distributed across socio-economic groups, spatially 
referenced micro-data is required.  

As noted above, POWSCAR data is the only population data source for Ireland with 
detailed individual commuting information. This data however contains no income 
information. In contrast, the Survey on Income and Living Conditions (SILC) is a 
nationally representative micro-dataset containing demographic and socio-economic 
characteristics, including income, employment and household composition statistics 
(CSO, 2013). This data however is only available at a coarse spatial scale, the NUTS2 
region of which there are only two regions for Ireland. Any analysis using the SILC 
survey is constrained to the national level. Furthermore, the SILC dataset does not 
contain commuting data. Using a matching algorithm to link the SILC data with the 
small area level SAPS and POWSCAR data, a spatially detailed dataset is created 
which allows an examination of the value of commuting travel times relative to 
disposable income across the Irish regions. One can use spatial microsimulation 
techniques to accomplish this (O'Donoghue et al., 2013; Chin and Harding, 2006; 
Ballas et al., 2007). 

The development and application of spatial microsimulation models offers 
considerable scope and potential to analyse the individual composition of an area, so 
that specific policies may be directed to areas with the greatest need for that policy 
(Birkin and Clarke, 2012). The data from the Simulated Model of the Irish Local 
Economy (SMILE) presents a measure of income after taxes and benefits at an 
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individual and household scale and is used to overcome the lack of spatially 
disaggregated income data. SMILE utilises a data fusion process where micro data is 
matched using a statistical algorithm with census data to generate spatial micro data 
(O'Donoghue et al., 2013). The SMILE model uses a Quota Sampling (QS) 
methodology (Farrell et al., 2010) which reweights survey data according to the 
quotas for each area. First the micro data is randomly ordered.  This micro data is then 
sampled from until the quotas - which are set by the constraint variables from the 
census - are filled. This step is followed by a calibration method which assigns market 
incomes to these households. The tax-benefit microsimulation component of SMILE 
presents a measure of disposable income for each household (O’Donoghue et al., 
2013). The dataset created by SMILE contains demographic, socio-economic, labour 
force and income variables at the micro-level for both individuals and family units. 
For a complete technical overview of the SMILE and the Quota Sampling 
methodology please see (Farrell et al., 2013b; Farrell et al. (2013a)). 

The data created in SMILE is synthetic data. Validation of the output created by 
SMILE is an integral component of the model’s construction. Calibration through 
alignment (Morrissey and O’Donoghue, 2011; Morrissey et al., 2013) offers a method 
to ensure that the output produced by the SMILE model is consistent with real world 
data. A full description and application of the calibration method in terms of labour 
force and income distributions and socio-economic characteristics and health service 
utilisation is provided by Morrissey and O’Donoghue, (2011) and Morrissey et al., 
(2013), respectively. Where data did not previously exist, out-of-sample validation is 
also utilised. This method of validation involves comparing the synthetic data with 
new external data, with the data in both datasets aggregated to the same spatial scale. 
In the case of the SMILE model, external at-risk of poverty estimates from Watson 
(2005) are utilised for out-of-sample validation. Poverty estimates from SMILE 
simulated data, are compared with estimates from the external data. Post calibration, 
SMILE produces a population dataset which contains income and demographic data 
at the ED level (Vega et al., 2016). After linking the POWSCAR to the SMILE data a 
new dataset is created which contains individual socio-demographic and economic 
information as well as information on their commuting time, distance and mode. 
Linking this data to the OD cost matrix calculated in this paper, the impact of the 
flooding disruption on the spatial distribution of employment income at the electoral 
division level is measured.  

Sample Selection 

Our data concerns flooded roads, which mainly cause disruption to motor vehicles. 
For this reason pedestrians, cyclists or train users are not included in the analysis (bus 
users are included). Only individuals who are in employment and commute are 
included. Students, those who work from home or the unemployed are not included. 
This analysis is also restricted to commuters whose journeys start and end within 
County Galway. As data on the extent or precise locations of flooding on the road 
network outside of County Galway was unavailable, the analysis reported here cannot 
say whether commuters traveling outside the county had their journeys disrupted. It 
would be incorrect to assume that commuters travelled unimpeded once outside 
County Galway – for example, the town of Athlone which lies just outside the 
Galway county boundary was particularly badly affected by flooding during this same 
period (Pope, 2016). This data constraint would tend to cause us to underestimate the 
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total cost of the disruption to travel caused by the flooding in County Galway. After 
removing individuals living or working outside of County Galway as well as the other 
specifications mentioned, the sample comprises 48,000 individuals. 

4. Methodology – Network Analysis 

The Network Analysis is conducted in ArcGIS using the Network Analysis tool. First 
a Network Dataset (ND) is created utilising the OpenStreetMap data. This ND is 
required for the OD cost matrix to be calculated. The ED centroid points are used as 
both the origin and destination points. For data confidentiality reasons the POWSCAR 
only reports an individual’s origin ED and destination ED. No detail is given on the 
location of residence or place of work within the ED. The OD cost matrix function in 
ArcGIS ‘solves’ by calculating a time and distance from each origin to every other 
destination. The process outputs the quickest time along the road network and 
corresponding distance.  

Building the Network Dataset 

The open source dataset OpenStreetMap1 (Haklay and Weber, 2008) which contains 
detailed information on roads, paths and cycle lanes is used as the road network data. 
This data has missing information on speed limits and no congestion data. Irish road 
numbering is also missing which is required for matching information in relation to 
which roads were closed. The speed values are attributed to roads based on the road 
class. Speed values attributed to sections of the road network are from the RSA 
(2013)2 free speed survey, which publishes average car speeds by road class3. This 
speed survey monitors the free speeds (speeds at which drivers choose to travel when 
unconstrained by road geometry, weather conditions or traffic conditions) of vehicles 
in both urban and rural areas. 

Galway County Council collected detailed daily data on the effects of flooding on the 
road network within the County4. The council set up an ArcGIS app which allowed 
locally based staff to upload flood details. Office based staff then added information 
about road closures. This information was combined with interactive maps and made 
available to the public through a link on the Council website (National Directorate for 
Fire and Emergency Management, 2016). The data contains information on whether a 
road is open, closed, passable or only one-lane open. A unique identifier is given for 
each road segment affected and the data is time stamped. The data covers a 17 
working day period of disruption and is time stamped (9th December 2015 to 5th 
January 2016). In some cases the data was updated twice daily (morning and 
afternoon). This data was then linked to Galway Road Network data 5 . The 
OpenStreetMap dataset is used as it is a richer dataset compared to the Galway Road 
Network data. The OpenStreetMap does not contain the unique road numbering 
identifier (DoTTS, 2013) required to match the flooded road data. The flooded roads 
data was firstly matched to the Galway Road Network Data using the unique road 
                                                 
1 http://download.geofabrik.de/europe/ireland-and-northern-ireland.html 
2 See Appendix Table 8 
3 Five road classes are included in the model; Motorway, National Primary, National Secondary, 
Regional and Local. Where road class is missing, road is labelled local road. 
4 https://data.gov.ie/dataset/floodedroadsdec2015  
5 https://data.gov.ie/dataset/galway-county-roads-networkc9c86 
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numbering identifier. These flooded roads are then converted from polyline to 
rasterised data using 5m pixels. This raster data is attributed to the overlapping 
OpenStreetMap polyline using the Zonal Statistics as a table function. This process 
overlays the Galway Road Network with the OpenStreetMap and assigns a unique 
road numbering identifier to all overlapping roads in the OpenStreetMap data. 

In order to calculate the time it takes to travel a segment of road, speed and distance is 
used. For each segment of the road network the time it takes in minutes to travel that 
segment is recorded using the following formula. 

 

A Network Dataset (ND) is created in ArcMap using the create ND function. Turns or 
restrictions are not modelled in the dataset and time rather than distance is used as the 
impedance factor. The resulting OpenStreetMap Data contains information on road 
status (Open, close, passable), average speed, distance and time. 

Calculation of the Origin-Destination Cost Matrix 

Similar to other studies (Ford et al., 2015b) the centroid of each electoral division 
(ED) in County Galway is used as the origin and destination points. Where an 
origin/destination point does not overlap with a road, the centroid is snapped to the 
closest road segment. An OD cost matrix was then calculated for the 234 EDs in 
County Galway. The calculated OD cost matrix was combined with the POWSCAR 
data to estimate actual commuting patterns in our study area – i.e. average journey 
times and distances travelled to work for commuters living in each ED. This gives us 
a status-quo estimate of commuting patterns in County Galway in the absence of any 
disruptions to the road network.  

The OD-cost matrix procedure described above was then re-run accounting for the 
disruptions to the road network caused by the flooding. In practical terms, this 
involves removing road segments that were impassable, and reducing the average 
speed where the road was partially flooded. In a literature review of flood depth a 
speed of between 6 to 18 km/h was found for small cars (Pregnolato et al., 2017b). A 
speed of 10 km/h is used which is within that range. The status of affected roads was 
updated eleven times by Galway County Council during the 17 working day period 
studied. The OD model is re-run eleven times; each run with an updated configuration 
of available routes and speeds.  

5. Results  

The first part of the analysis focuses on the impacts of the flooding across space. The 
second part examines the distributional and individual impacts. This ensures there is 
between and within area analysis of flooding on commuting. Using data from SMILE 
enables us to examine the distributional impacts of the flooding across socio-
economic groups. Individuals can be analysed using income, socio-economic and 
demographic characteristics and journey times. Results are aggregated at the electoral 
division level using commuter’s origin. 
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Results (1) - Spatial impacts of flooding on commuting costs  

Comparing the status quo journey time for each commuter with the journey time after 
the disruption the average additional journey time per commuter per day is calculated 
for each ED. After the commuting disruption, some commuters spend an extra 30-60 
minutes per day commuting [Figure 1]. Commuters living in the areas around Gort to 
the south of Galway city, and Headford to the north (Galway city commuter zones) 
faced the biggest increase in journey times. According to local media these were also 
the worst affected areas (Galway Bay FM Newsroom, 2015). Mapping from the 
Copernicus Emergency Management Service illustrates the extent of the flooding (EC, 
2015) in south county Galway. 

Figure 1: Additional time commuting due to floods 

[Insert figure 1 here] 

Status quo commute time subtracted from commute time post Storm Desmond. Average time per 
commuter per ED 

The results are aggregated based on an urban-rural classification [table 3]. As the 
table shows, the effect of the disruption due to flooding on commuters living in 
Galway city was relatively small. In contrast, commuters living in rural areas and 
small towns or villages were worst affected. The additional journey time for 
commuters living in villages was 157 minutes on average, due to the flooding, 
compared to just 10 additional minutes commuting time due to flooding on average 
for those living in Galway city. Not surprisingly, the table shows that those living in 
rural areas already had longer commutes under the status quo (J time normal) relative 
to their urban counterparts. However, the impact of the flooding on commuting time 
was still more severe for the rural residents, even relative to normal journey times. For 
commuters living in villages, commuting time increased by 27% on average relative 
to normal circumstances, as a result of the flooding, while in the city the relative 
increase in commuting time was just 4% on average.  

Table 3: Estimated additional journey times due to flooding, by Urban-Rural 
Classification of commuters over 17 day period 

Location 
Total 
Commuter
s 

Proportion of 
commuters 

Mean J 
time 
Normal 
(minutes) 

Mean J time 
Flood 
(minutes) 

% Change 
in mean J 
time 

Rural 9,033 0.24 625 738 18% 
Village (200 – 
1,499) 

5,448 0.14 585 742 27% 

Town (1,500 – 
2,999) 

1,810 0.05 542 673 24% 

Town (3,000 – 
4,999) 

3,492 0.09 374 390 4% 

Town (5,000 – 
9,999) 

2,544 0.07 570 649 14% 

Galway City 15,833 0.41 228 238 4% 

Source: Author Calculations 
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J time Normal is total commute time over a 17 day period using status quo conditions. 
J time Flood is total commute time post flooding over the 17 day period. Figures are 
mean times per commuter, using all commuters in that urban-rural classification 

Commuting times and distances are then converted to monetary costs using SVTT and 
transport costs per km, this information is then combined with simulated income data 
from SMILE. This gives an estimate of a commuter’s costs both before and after the 
flood disruption. The additional commuting costs of the disruption as a percentage of 
the daily working wage is calculated. In the worst affected areas these costs represent 
10% to 38.5% of the daily working wage [Figure 2]. The figure shows clearly the 
concentration of the impact (additional commuting costs relative to incomes) in the 
commuter belt to the north and south of Galway city. This finding highlights the 
vulnerability to disruptions of commuters living in rural areas, where a lack of 
transport alternatives can result in an overreliance on the private car.  

Figure 2: Additional commuting costs due to floods as % of work income 

 [insert figure 2 here] 

Additional commuting time and distance as a result of flooding converted into monetary cost and 
presented as a percentage of total work income over 17 day period 

Results (2) – Distribution of flood impacts 

In the first part of the results there was a focus on the geographic nature of the 
disruption. In this section there is a greater focus on the distributional impact of the 
flood event on the income distribution and overall inequality. 

As a first step, the relationship between the size of the disruption caused by the floods 
with various socio-economic characteristics is measured at the individual level, using 
a set of simple cross-sectional regressions of the following form:  

 

 
(1) (2) (3) (4) 

Variables Total Journey Time (Normal) Total Journey Time (Event) Δ in Journey Time Δ Journey Time (%) 

Disposable Income ('000) 1.489*** 1.943*** 0.454*** 0.068*** 

 
(0.121) (0.148) (0.052) (0.012) 

Age 17.832*** 21.468*** 3.636*** 0.435*** 

 
(1.18) (1.443) (0.513) (0.113) 

Age2 -0.190*** -0.228*** -0.038*** -0.003** 

 
(0.014) (0.017) (0.006) (0.001) 

Tertiary Education 17.719*** 24.573*** 6.854*** -0.042 

 
(3.866) (4.728) (1.682) (0.371) 

Owner Occupier -36.921*** -49.763*** -12.842*** -3.447*** 

 
(5.679) (6.944) (2.47) (0.545) 
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where Dcp represents the disruption due to flooding for individual commuter c in 
location p, measured in various ways, as discussed further below, and Xcp is a vector 
of individual level socio-economic characteristics. Some of the specifications include 
ED fixed effects.  

In our first set of regression results [Table 4] those already with long commutes under 
the status quo, are disproportionately affected by the flood disruptions. In general, 
long commutes (under status quo) are associated with higher income, higher 
education, and being (relatively) young (column 1 of Table 4). This same pattern also 
holds for the effects of the floods (columns 2-4 of Table 4), this is not surprising as 
from the previous table these effects are increasing in normal commute time. 

Table 4: Estimated relationship between journey time under status quo (column 
1) and taking account of flood disruption (columns 2-5) with various socio-
economic characteristics, measured at the individual level 

Commuting costs of flooding as % of disposable income is shown to decrease in 
income (so higher earners are relatively less impacted) [Table 5]. This result contrasts 
with the earlier finding that the size of the disruption due to flooding, in terms of 
additional time, was increasing in income. However, the results in Table 5 indicate 
that the relative value of this disruption – i.e. the welfare effect – is larger for those on 
lower incomes. Specifically, the results show that for each extra €1000 in disposable 
income, the additional cost of the flood as % of income goes down ~3.6% (column 1 
of Table 5). This income effect is slightly stronger within EDs, at about 4% (columns 
2 and 4 of Table 5) and holds when controlling for other socio-economic 
characteristics such as age, education and housing tenure (columns 3 and 4 of Table 
5). 

     
Observations 39,538 39,538 39,538 39,538 

R-Squared 0.014 0.015 0.006 0.003 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
(1) (2) (3) (4) 

Variables Δ in Journey Cost as % Income Δ in Journey Cost as % Income Δ in Journey Cost as % Income Δ in Journey Cost as % Income

Disposable Income ('000) -0.0036*** -0.0040*** -0.0040*** -0.0043***

   
(0.000) (0.000)

Age 
  

0.018*** 0.012***

   
(0.002) (0.002)

Age2 
  

-0.000*** -0.000***

   
(0.000) (0.000)

Tertiary Education 
  

0.027*** 0.029***

   
(0.007) (0.006)

Owner Occupier 
  

-0.043*** 0.000

   
(0.010) (0.008)

ED Fixed Effects 
 

YES 
 

YES 
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Table 5: Estimated relationship between the change in commuting costs due to 
flooding (as a % of disposable income) with various socio-economic 
characteristics, measured at the individual level. 

Figure 3: Lorenz Curves of work income for the 17 day period before and after 
commuting, including flood disruption 

[Insert figure 3 here] 

Figure 3 and Table 6 illustrate the increasing inequality post flood event. The Lorenz 
curve shifts outwards after the inclusion of commuting costs [Figure 3] and again 
after the disruption. This gap decreases further up the income distribution, illustrating 
how lower income groups are disproportionately impacted by the disruption.  

Table 6: Percentage Share of Income attributed to each quintile group 
Period Income Commuting Commuting After Flood 

Quintile Group % of Median Share % % of Median Share % % of Median Share % 

1 37 2.3 24 1.2 20 0.9 

2 55 4.1 43 2.7 39 2.5 

3 72 6.0 62 4.5 59 4.2 

4 85 6.9 82 6.2 80 6.0 

5 100 8.4 100 7.8 100 7.7 

6 116 9.7 120 9.4 121 9.4 

7 131 11.1 143 11.3 145 11.3 

8 149 12.6 168 13.3 172 13.5 

9 179 14.6 210 16.0 216 16.3 

10 24.2 27.7 28.3 
Source: Author Calculations 

Table 7 examines the impact of commuting and the disruption on overall inequality. 
Commuting and the flood disruption have increased the overall level of inequality. 
The monetary cost of travel has a greater impact on inequality compared to the time 
costs. Overall, commuting is regressive, increasing inequality from 0.293 (when work 
income is considered) to 0.473 (after commuting and the flood disruption). The Theil 
index is used to analyse population subgroups. Inequality can be easily decomposed 
into the amount of variability attributed to the different population subgroups 
(Shorrocks, 1980; Shorrocks, 1982). The majority of the variation in income and costs 
can be explained between individuals rather than between areas. This would suggest a 
large variation in travel times and distances even within an area. This trend holds for 
commuting before and after the travel disruption. The Reynolds-Smolensky index 
measures the progressivity or regressivity of a measure by examining the difference in 
Gini of pre- and post-measure incomes (Reynolds and Smolensky, 1977). The 

     
Observations 39,538 39,538 39,538 39,538

R-Squared 0.008 0.374 0.01 0.376

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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increased Gini coefficient and negative sign on the Reynolds-Smolensky measure 
confirms the regressive nature of commuting and the disruption. 

Table 7: Theil Decomposition Index of Inequality, showing market work income 
plus travel costs before and after the flood event 

Period Income and Costs I2 Index Within % Between % 
Gini Reynolds- 

Smolensky 

Market Work Income 0.293 80.2% 20.3% 0.327 0 

Normal Scenario:   

Monetary cost travel 0.386 81.3% 19.2% 0.361 -0.034 

Time cost travel 0.321 80.9% 19.7% 0.340 -0.012 

Total cost of travel 0.439 81.7% 18.9% 0.377 -0.050 

After Flooding:   

Monetary cost travel 0.403 81.2% 19.3% 0.364 -0.037 

Time cost travel 0.326 80.9% 19.6% 0.341 -0.013 

Total cost of travel 0.473 81.4% 19.2% 0.383 -0.056 
Normal scenario is status quo conditions over a 17 day period, after flooding takes 
into account extra time and travel costs. Monetary, time and total costs are each 
subtracted from market work income to generate various inequality indices. 

6. Conclusions 

The flooding event had a significant impact on commuting times and costs. Those 
living in rural areas and small towns and villages were greatly impacted. In worst 
affected areas, extra costs were up to 39% of earnings for the period. The areas of the 
Galway city commuter belt north and south may suggest a proximity to city effect. 
Those living in rural areas are more at risk to travel disruptions due to longer 
commuting times. These areas are also served poorly by public transport so have few 
alternatives to using the car. The disruption costs are unequally distributed, with those 
already with large commuting costs burdened with extra costs. The disruption also 
increased inequality with those on lower incomes suffering proportionately greater 
losses. Poor households may be forced to live in risky areas. These areas may warrant 
further investigation to determine if there is a discount on house prices in these areas. 

The results are consistent with the narrative that low income groups are most 
vulnerable to weather shocks such as flooding. This paper highlights that even within 
a developed country such as Ireland, those in the low-middle income groups are most 
at risk. This research makes two important findings; firstly the costs imposed on 
commuters from a flooding event represent a sizeable portion of their wages. 
Secondly these costs are not spread equally across income groups. Similar to indirect 
taxes (i.e. value added tax), commuting costs have a regressive impact on inequality. 
Those already facing long commutes combined with a low income are most 
vulnerable to extreme weather disruptions. The frequency of disruptions, such as 
those caused by Storms Desmond, Eva and Frank, is likely to increase due to climate 
change (van Oldenborgh et al., 2015). Policy intervention may be required for those in 
low income groups to ease the burden of the extra costs, while the distributional 
impact identified here should be taken into account in the formulation of flood risk 
management plans and climate change adaptation strategies. 
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Given the number of National roads affected more infrastructure advancements 
should be made to ensure the road network is more resilient to extreme weather events 
such as Storm Desmond. A vulnerability analysis similar to the one by Jenelius and 
Mattsson (2012) can help identify critical nodes while an impact assessment of 
climate change on future transport disruptions can test the resilience of the road 
network (Lhomme et al., 2013). Planning considerations should be made towards 
reducing commuting times, either by increasing public transport provision or reducing 
the distance between areas of residence and areas of work. More flexible working 
arrangements could also be put in place whereby workers affected could work 
remotely. Such an arrangement can reduce commuters costs (Caulfield, 2015). In the 
analysis we are unable to differentiate between the likelihood of a worker being late 
or absent. The calculation of journey times assumes that every commuter travelled to 
work on each working day during the period of disruption. This assumption may 
underestimate absenteeism because of the disruption. In the aftermath of widespread 
flooding in central Europe in June 2013, businesses reported 60% of their workforce 
were affected either by being absent or late from work (Thieken, 2016).  

The data utilised for this study included time stamped spatial data on flooding impacts 
to the road network and highlights the benefits of big data collection. This paper 
illustrates a method whereby the costs of extreme weather events can be measured by 
adding a spatial component to open source data. 

This study highlights the significant costs to commuters associated with the impact of 
a flood disruption on the transport network. The distributional impacts of the 
disruptions identified here are also of relevance to policy-makers tasked with 
developing flood risk management plans and climate change adaptation strategies. 
However, further research is required to better understand the impact of extreme 
weather events across income groups.   
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Figures:  

 

Figure 4: Additional time commuting due to floods 

Status quo commute time subtracted from commute time post Storm Desmond. Average time per 
commuter per ED.  

  
 

 

 

 

Figure 5: Additional commuting costs due to floods as % of work income 

Additional commuting time and distance as a result of flooding converted into monetary cost and 
presented as a percentage of total work income over 17 day period. 
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Figure 6: Lorenz Curves of work income for the 17 day period before and after 
commuting, including flood disruption 
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Appendix: 

Table 8: Road Safety Authority - Free Speeds by Road Class 

Road Type 
Speed Limit 
(km/h) 

Avg. Speed 
(km/h) 

Urban national 50 60 

Urban national 60 63 

Urban arterial 50 57 

Urban arterial 60 64 

Residential 50 40 

Residential 30 31 

Motorway 120 112 

Dual Carriageway 80 91 

Dual Carriageway 100 95 

National Primary Road 100 92 

National Primary Road 80 84 
National Secondary 
Road 100 85 

Regional Roads 80 77 

Regional Roads 50 53 

Local Roads 50 63 

Local Roads 60 56 
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