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Objective: Schizophrenia has recently been associated with
widespread white matter microstructural abnormalities, but
the functional effects of these abnormalities remain unclear.
Widespread heterogeneity of results from studies published
to date preclude any definitive characterization of the re-
lationship between white matter and cognitive performance
in schizophrenia. Given the relevance of deficits in cognitive
function to predicting social and functional outcomes in
schizophrenia, the authors carried out a meta-analysis of
available data through the ENIGMA Consortium, using a
common analysis pipeline, to elucidate the relationship be-
tween white matter microstructure and a measure of general
cognitive performance, IQ, in patients with schizophrenia and
healthy participants.

Methods: The meta-analysis included 760 patients with
schizophrenia and 957 healthy participants from 11 partici-
pating ENIGMA Consortium sites. For each site, principal
component analysis was used to calculate both a global
fractional anisotropy component (gFA) and a fractional an-
isotropy component for six long association tracts (LA-gFA)
previously associated with cognition.

Results: Meta-analyses of regression results indicated that
gFA accounted for a significant amount of variation in cog-
nition in the full sample (effect size [Hedges’ g]=0.27,
CI=0.17–0.36), with similar effects sizes observed for both
the patient (effect size=0.20, CI=0.05–0.35) and healthy
participant groups (effect size=0.32, CI=0.18–0.45). Com-
parable patterns of association were also observed be-
tween LA-gFA and cognition for the full sample (effect
size=0.28, CI=0.18–0.37), thepatient group (effect size=0.23,
CI=0.09–0.38), and the healthy participant group (effect
size=0.31, CI=0.18–0.44).

Conclusions: This study provides robust evidence that cog-
nitive ability is associated with global structural connectivity,
with higher fractional anisotropy associated with higher IQ.
This association was independent of diagnosis; while schizo-
phrenia patients tended to have lower fractional anisotropy and
lower IQ thanhealthyparticipants, thecomparable sizeof effect
in each group suggested a more general, rather than disease-
specific, pattern of association.

AJP in Advance (doi: 10.1176/appi.ajp.2019.19030225)

Schizophrenia is a leading cause of disability worldwide (1).
Although this disability is typically characterized by clinical
symptom severity, the cognitive deficits associated with the
disorder strongly predict social and functional outcomes
(2–4). These deficits are observed across multiple cognitive
domains (5), suggesting that broad, rather than regionally

specific, changes inbrain functionare likely tounderpin these
deficits.

At a neural systems level, robust evidence of widespread
differences in both white and gray matter has been dem-
onstrated in large samples of patients with schizophrenia
compared with healthy participants (6, 7). Compared with
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healthy participants, people with schizophrenia show wide-
spread thinning of cortical gray matter and reduced cortical
surface area, particularly in frontal and temporal lobe regions
(7). Analysis of subcortical gray matter volumes has simi-
larly shown evidence of widespread differences, including
bilateral volume abnormalities of the hippocampus, amyg-
dala, and thalamus (8). Recently, in the largest diffusion
tensor imaging (DTI) study of white matter abnormalities
undertaken to date, widespread reductions in fractional
anisotropy (FA)wereobserved foramajority (19/25)of tracts,
with the largest effects observed for global white matter FA,
andmore locally, in large tracts including the anterior corona
radiata and the corpus callosum (6).

Taken collectively, these widespread abnormalities in-
dicate adiseasepathology reflectiveof generalizedchanges to
the brain’s structural network and functions. This is con-
sistent with the disconnectivity hypothesis of schizophre-
nia (9, 10), which suggests that functional impairments and
disability result from abnormal and inefficient communica-
tion amongdistributednetworksof brain regions (11, 12). This
hypothesis would be further supported if these indices of
disconnectivity could be directly related to variation in cognitive
performance and functional outcomes, butwell-powered studies
in this area are lacking.

To address this gap, we aimed in this study to examine the
relationship between brain structure and cognitive function
on a large, global scale. To do this, we carried out a meta-
analysis of available data through the ENIGMA Consortium,
using a commonanalysis pipeline, to elucidate the relationship
betweenwhitemattermicrostructureandameasureofgeneral
cognitive performance, IQ, in patientswith schizophrenia and
healthy participants. We hypothesized that 1) a significant
positive correlation would be observed between white matter
microstructure and IQ across samples, and 2) this association
would be moderated by diagnosis.

METHODS

Meta-Analysis
Study sample. Data for this study were collected via the
ENIGMA Schizophrenia DTIWorking Group and consisted
of a subsample of participating sites in a previously published
study (6). Inclusion criteria for the present study were based
on the availability of data processed using the ENIGMADTI
protocol andmeasures of estimated IQ for each participant in
agivendata set.Thefinal sampleconsistedof 11 siteswithdata
on bothDTI and IQ, totaling 957 healthy control participants
and 760 patients. Each study sample had been assessed with
all participants’ written informed consent and approved by
the relevant local institutional review boards. Individuals
whose diffusion images were of poor quality were excluded
from the analysis.

Measurement of IQ.TheWechsler Scale of Adult Intelligence
(WAIS)wasusedtoestimate IQinall 11 studies.Tensitesused
the English version of the test (WAIS, 3rd edition); at the

Madrid site, the Spanish version of the WAIS was used. The
WAIS consists of a battery of verbal and nonverbal subtests,
scores of which are combined to derive scores for verbal IQ,
performance IQ, and full-scale (total) IQ. Because not all sites
had both verbal and performance scores, our analyses were
based exclusively on full-scale IQ scores. The number of
subtests used to determine this full-scale score also varied
among sites. Following previous large-scale multisite anal-
yses of IQ in schizophrenia by other consortia (e.g., COGENT
[13]), IQ scores calculated for all sites were based on prorated
subtest scores. For nine of the 11 sites, full-scale IQwas based
on three or more subtests, and at two sites, it was calculated
on the basis of only the two subtests that were available
for those samples (the Australian Schizophrenia Research
Bank [ASRB] and theMaryland Psychiatric Research Center
[MPRC]).

Image acquisition and processing. Image data were acquired
using site-specific diffusion MRI sequences. Details of study
type, scanner, and acquisition parameters for each site are
presented in Table S1 in the online supplement. For each
site, preprocessing, including eddy current correction, echo-
planar imaging-induced distortion correction, and tensor
fitting, was carried out locally based on local protocols and
procedures, and was further informed by quality control
pipelines available at the ENIGMA DTI web site (http://
enigma.ini.usc.edu/protocols/dti-protocols) and the Neu-
roimaging Informatics Tools and Resources Clearinghouse
site. To correct for motion during image acquisition, pre-
processing included the alignment of diffusion-weighted
images to the b=0 using linear image registration. Individual
subject data with excessive motion were not included in this
analysis.AsperKelly et al. (6), harmonizationofpreprocessing
schemeswasnot enforcedacross sites, to allow individual sites
touseexistingpipelines thatmaybemoreappropriate for their
data acquisition. After preprocessing, harmonized image
analysis ofDTImeasuresofFAwas thenconductedat eachsite
in exactly the samemanner using the ENIGMADTI protocol.
The ENIGMADTI protocol using tract-based spatial statistics
(TBSS) (14) outputs averaged FA across all whitematter tracts
(listed inTable S2 in the online supplement). TheTBSSoutput
includes FA values for both right and left white matter tracts
and an average FA value based on the average FA from both
hemispheres. Average FA values were used in this analysis to
minimize multiple comparisons and any potential issues of
site-based left/right flipping, which would limit interpreta-
tions of a lateralized analyses.

Statistical Analysis
Per-site analysis. Calculation of FA is based on specific ac-
quisition protocols, including scanner make and model, dif-
fusion sequence parameters, methods of tensor estimation
models, and processing pipelines (15, 16). To overcome this
systematic limitation, preliminary analysis was carried out
individually at each site to assess the association between
white matter tract microstructure and estimates of IQ. Only
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then were summary statistics compared, thus removing the
issue of variances across sites due to scanner or acquisition
parameters.

Per-site latent fractional anisotropy factor analysis. To re-
duce the burden of multiple testing, we undertook principal
component analysis of white matter tracts indexed by dif-
fusion tensor imaging to index white matter. For each site
separately, principal component analysis, implemented in
SPSS, was used to derive an unrotated first principal com-
ponent, representing global white matter, termed gFA. In
addition, six long association tracts, which have previously
been associated with variation in IQ (see Table S2 in the
online supplement), were also subjected to a principal com-
ponent analysis, for which the first unrotated principal com-
ponent was again derived, termed LA-gFA. Calculation of
these components followedanapproach similar to that used in
analyses carried out by Cox et al. (17) and Penke et al. (18).
These studies reported that a latent factor explained a sub-
stantial portion of the variance in FA across all white matter
tracts,wherebyatan individual level,higherFAinasingle tract
predicted higher FA in all tracts. Generation of a single
principal component for our analyses was designed to mini-
mize the need to control for multiple comparisons across all
whitematter tracts. Foreachprincipalcomponentanalysis,we
examined scree plots and the extraction values to determine
whether tractFAvalues couldbe representedbya single latent
factor. Comparable scree plots were observed for data across
all sites for gFA (Figure 1A). The loadings of eachwhitematter
tract on the first principal component are presented in Sup-
plement 2 (Excel file) in the online supplement. FA variance
explained by the first unrotated component ranged from 44%
to 70%, with a median of 56% (see Table S3 in the online
supplement). Our second principal component analysis in-
cluded FA of six long association tracts (LA-gFA) based on
white matter tracts previously associated with IQ in the lit-
erature (19–26). The six tractswere the arcuate fasciculus, the
anterior limb of the internal capsule, the superior longitudinal
fasciculus, theuncinate fasciculus, the inferior fronto-occipital
fasciculus, and the cingulate bundle. As with gFA, comparable
scree plots were observed for data across all sites for LA-gFA
(Figure 1B).

The same principal component analysis method was used
to derive both global and long association latent factors for
sites that included secondary diffusion parameters. Secondary
parameters included mean diffusivity, radial diffusivity, and
axial diffusivity.

Per-site assessment of the variance in IQ explained by white
matter microstructure. To calculate the variance in IQ ex-
plained by white matter microstructure, a hierarchical re-
gression analysiswas carried out on a site-by-site basis (using
SPSS, version 24). After controlling for age and gender, the
change in r2wasused to estimate the variance in IQexplained
by either gFA or LA-gFA. These regression analyses were
carried out for both the full sample and for patients and

control participants separately to allow determination of the
effects of diagnosis.

Meta-Analysis
The ComprehensiveMeta-Analysis software program (https://
www.meta-analysis.com/) (statistical consultancy was not
provided) was used locally to analyze summary data from all
11 contributing sites. Themeta-analysis consisted of a two-level
model comprising 1) a random-effects model estimating the
averageeffect sizebycombining theobservedeffect sizes across
all studies in the sample, and 2) a mixed-effects model in-
corporating diagnosis as a moderator variable to estimate the
between-group variation and determine the effect of diagnosis
on the observed association between white matter microstruc-
tureandIQ.Asecondaryanalysiswascarriedouttodeterminethe
moderating effects of gender on the association between white
matter tracts and IQ.

RESULTS

Meta-Analysis
Demographic data (gender, age, and IQ) for the total
ENIGMA samples of 957 healthy control participants and
760 patients with schizophrenia are provided in Table S4 in
the online supplement. The mean age for the patient and
control samples across all sites was 36 years (SD=9.1 and
SD=10.1, respectively). With adolescent sites removed, the
mean age for the patient and control samples was 39 years
(SD=5.55 and SD=5.98, respectively). The patient group was
70%male (535males, 225 females), and the control groupwas
56% male (539 males, 418 females) (x2=4.2, p=0.04). The
mean IQ was 97 (SD=16.47) across patient samples and
113 (SD=13.14) for the control participants (see Table S4).
These values are somewhat higher than might be expected,
especially for the patient group; a reviewof Table S4 suggests
that this difference is due to the IQ of patients in the ASRB
data set, which was the only data set to have a mean patient
IQ .100.

Analysis of means and standard deviations for IQ across
sites (see Table S4) shows that on average, patients had
significantly lower IQcomparedwith thecontrol participants
(control group: mean=113, SD=5.82; patient group: mean=97,
SD=8.24; t=5.94, df=27, p,0.001). The variance in IQ across
sites was less for the control participants compared with the
patients (variance for control group:mean=13.14, SD=2.85; for
patients: mean=16.53, SD=3.31; t=22.94, df=27, p,0.01). The
differences in IQandvariance in IQremainedsignificantwith
exclusion of the ASRB data (IQ for control participants:
mean=110, SD=6.02; for patients: mean=93, SD=6.89; t=5.85,
df=27, p,0.001; variance in IQ for control group:mean=14.33,
SD=2.65; for patients: mean=17.50, SD=3.41; t=22.24, df=27,
p,0.05).

DTI and IQ
The white matter tracts included in the gFA and LA-gFA
principal component analyses are outlined in Table S2 in the
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online supplement. The scree plots from the principal com-
ponent analysis for each site provided evidence for a strong
single latent factor for both global FA (gFA) and the six long
association tracts (LA-gFA) in each case (Figure 1). To de-
termine the variances in IQ explained by global and long
association white matter tracts, a regression analysis was
carried out for gFA and LA-gFA separately, controlling for

both age and gender, in patients and healthy control par-
ticipants, on a site-by-site basis.

gFA Analyses
Meta-analytical results from the regression analysis for gFA
showed that global white matter accounted for a significant
amount of variance in IQ in the overall sample (3% variance,

FIGURE 1. Scree plots for gFA and LA-gFA principal component analyses in a study of white matter microstructure and cognitive ability
in schizophreniaa
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a gFA=global fractional anisotropycomponent; LA-gFA=fractional anisotropycomponent for six long association tracts; ASRB=Australian Schizophrenia
Research Bank; COBRE=Center for Biomedical Research Excellence; HUBIN=Human Brain Informatics; MCIC=MIND Clinical Imaging Consortium;
MPRC=Maryland Psychiatric Research Center; TOP=Thematically Organized Psychosis (TOP) NORMENT Research Study.
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effect size [Hedges’ g]=0.27, 95% CI=0.17–0.36, p,0.001)
(Figure 2; see also Table S5 in the online supplement).

When considered separately, similar effects were ob-
served in both the healthy control group (effect size=0.32,
95% CI=0.18–0.45, p,0.001) and the patient group (effect
size=0.20, 95% CI=0.05–0.35, p,0.01) (Figure 3).

A between-group analysis was undertaken to estimate
whether the strength of association between white matter
and IQ was different in the patient group compared with the
healthy control group. No effect of diagnosis was observed
(mixed-model between-groups x2=1.29, p=0.26), indicating
that the amount of variance in IQ explained by gFA was
comparable between these groups.

Given the differences in developmental stage of two
samples that included adolescent participants (Oxford and
Madrid) compared with the rest of the cohort, we reran the
analysis excluding these two sites (control participants,
N=120; patients, N=84). Removal of these adolescent data
sets did not change the results of the meta-analysis, and

comparablefindingswereobtainedforthesampleoverall (effect
size [Hedges’ g]=0.27, 95% CI=0.17–0.38, p,0.001), the control
group (effect size=0.32, 95% CI=0.18–0.46, p,0.001), and the
patient group (effect size=0.21, 95% CI=0.06–0.37, p,0.01).
Furthermore,weobservedhigher IQ in thepatient groupacross
the ASRB sites. Again, removing this site from the analysis did
not change the observed effect size for the control group (effect
size=0.33, 95% CI=0.18–0.48, p,0.001) and the patient group
(effect size=0.21, 95% CI=0.006–0.40, p,0.05).

Because of the variance in effect size across sites, a leave-
one-out analysis was carried out to determine whether the
observed results were driven by single sites. The leave-one-
out cross-validation requires multiple iterations of the meta-
analysis on all the data except the one site excluded per
iteration (n21). A meta-analysis was then carried out on the
meanand standarddeviationof theobserved effect size for each
iteration, with one study omitted for the analysis. The results
of gFA leave-one-out analysis remained significant for each
iteration, with a mean effect size of 0.25 (range=0.18–0.34) for

FIGURE 2. Forest plot for gFA meta-analysis in a study of white matter microstructure and cognitive ability in schizophreniaa
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a There was no significant difference between the observed effect size in patients compared with control participants (x2=1.3, p=0.26). Effect values
indicated with a vertical line are Hedges’ g group summaries for patients and control groups separately; the diamond represents summary statistics for
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indicates the values relating to the patient cohort for each sample.
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the full sample, a mean effect size of 0.29 (range=0.26–0.34)
for the control participants, and a mean effect size of 0.20
(range=0.18–0.22) for thepatients (Figure4A; seealsoTableS8
in the online supplement).

LA-gFA Analyses
To test specifically for a relationship between cognition and
long association fiber tracts previously hypothesized in the
literature to be involved in cognitive performance, a single
latent FA factor was generated for the six long association
tracts identified above (LA-gFA). Similarly to global white
matter microstructure, LA-gFA accounted for a significant
amount of variance in IQ in the full sample (3.5% variance,
effect size=0.28, 95%CI=0.18–0.37, p,0.001) (Figure 3). This
significant effect for LA-gFA was also observed separately in
thecontrol group (effect size=0.31, 95%CI=0.18–0.44,p,0.001)
and the patient group (effect size=0.23, 95% CI=0.09–0.38,
p,0.01). The meta-analytic results for LA-gFA are outlined
in Table S6 in the online supplement. The between-sample

LA-gFAmeta-analysis results again indicate that there was no
significant difference in the observed effect size between the
control and patient groups (x2=0.55, p=0.46). As with gFA,
these results did not change after removing adolescent pop-
ulations (overall sample: effect size [Hedges’ g]=0.29, 95%
CI=0.18–0.40; control group: effect size=0.33, 95%CI=0.19–0.47;
patient group, effect size=0.23, 95% CI=0.08–0.39), with no ob-
served effect of diagnosis (x2=0.85, p=0.36). Similarly, removal of
theASRBdatadidnot significantly change theeffect size forboth
the control group (effect size=0.32, 95% CI=0.18–0.47, p,0.001)
and the patient group (effect size=0.27, 95% CI=0.07–0.47,
p,0.01), with no significant effect of diagnosis (x2=0.18,
p=0.68). The comparable findings between gFA and LA-gFA
areperhapsnot surprisinggiventhestrongpositivecorrelation
between these components (see Table S7 in the online sup-
plement). Given this, to determine whether the effects ob-
served for gFA were driven by long association tracts, we
recalculated the gFA component to exclude the six long as-
sociation tracts on which the LA-gFA was based. The results

FIGURE 3. Forest plot for LA-gFA meta-analysis in a study of white matter microstructure and cognitive ability in schizophreniaa
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a There was no significant difference between the observed effect size in patients compared with control participants (x2=0.55, p=0.46). Effect values
indicated with a vertical line are Hedges’ g group summaries for patients and control groups separately; the diamond represents summary statistics
for the full sample. LA-gFA=fractional anisotropy component for six long association tracts; ASRB=Australian Schizophrenia Research Bank;
COBRE=Center for Biomedical Research Excellence; EDIN=Edinburgh; HUBIN=Human Brain Informatics; MCIC=MINDClinical Imaging Consortium;
MPRC=MarylandPsychiatricResearchCenter; TOP=ThematicallyOrganizedPsychosis (TOP)NORMENTResearchStudy. In the lowerhalf of thefigure,
the “p” appended to site names indicates the values relating to the patient cohort for each sample.

6 ajp.psychiatryonline.org ajp in Advance

RELATIONSHIP BETWEEN WHITE MATTER MICROSTRUCTURE AND COGNITIVE ABILITY IN SCHIZOPHRENIA

http://ajp.psychiatryonline.org


FIGURE 4. Leave-one-out meta-analysis for gFA and LA-gFA in a study of white matter microstructure and cognitive ability in
schizophreniaa
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a For both gFA and LA-gFA, 11 separate meta-analyses were carried out with n21 site. The mean Hedges’ g effect size was taken for each meta-analysis
withonesiteomitted foreach iteration.Thestudynamecorresponds to the resultswhenthis sitewasomitted fromtheanalysis. Theassociationbetween
both gFA and LA-gFA with IQ remained significant for each iteration, indicating that the results are not driven by a specific site. gFA=global fractional
anisotropy component; LA-gFA=fractional anisotropy component for six long association tracts; ASRB=Australian Schizophrenia Research Bank;
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obtained were largely unchanged, both for the whole group
analysis (3% variance, effect size=0.29, 95% CI=0.19–0.39,
p,0.001) and separately for the control group (effect size=0.30,
95% CI=0.17–0.44, p,0.001) and the patient group (effect
size=0.27, 95% CI=0.13–0.42, p,0.001). Finally, as in the gFA
analyses, a leave-one-out analysis was also undertaken. Here
again, the results remained unchanged (full sample: mean
effect size=0.27, range=0.21–0.33; control group: effect
size=0.31, range=0.29–0.33; patient group: effect size=0.23,
range=0.21–0.27) (Figure 4B; see also Table S9 in the online
supplement).

Association Between gFA/LA-gFA and IQ in Males
and Females
To determine the effects of gender on the relationship be-
tween white matter and IQ, a further meta-analysis was
carried out. Similar results were observed between males
and females in gFA (males: effect size [Hedges’ g]=0.36, 95%
CI=0.23–0.48, p,0.001; females: effect size=0.39, 95%
CI=0.22–0.55, p,0.001), with no significant difference (x2=
0.088, p=0.77) (see Figure S1A and Table S10 in the online
supplement). For gFA, female patients had the largest ob-
servedeffect size, although thiswasnot significantlydifferent
comparedwithmalepatients (femalepatients:effect size=0.45,
95% CI=0.25–0.65, p,0.001; male control participants: effect
size=0.25, 95% CI=0.07–0.43, p,0.01; x2=2.14, p=0.14). Sim-
ilarly, there was no effect of gender in the healthy control
sample (female control participants: effect size=0.27, 95%
CI=0.06–0.48, p,0.05; male control participants: effect
size=0.39, 95% CI=0.20–0.47, p,0.001; x2=0.68, p=0.14).

Likewise for LA-gFA, there was no significant difference
in the observed effect sizes for males and females (males:
effect size=0.33, 95% CI=0.21–0.46, p,0.001; females: effect
size=0.37, 95% CI=0.20–0.53, p,0.001) (see Figure S1B and
Table S11 in the online supplement). Female patients had the
largest observed effect size for LA-gFA, although thiswas not
significantly different compared with male patients (female
patients: effect size=0.39, 95% CI=0.10–0.68, p,0.01; male
healthy participants: effect size=0.19, 95% CI=0.01–0.37,
p,0.01; x2=1.35, p=0.26). Similarly, there was no effect of
gender in the healthy control sample (female healthy par-
ticipants: effect size=0.31, 95% CI=0.10–0.52, p,0.01; male
healthy participants: effect size=0.38, 95% CI=0.20–0.57,
p,0.001; x2=0.27, p=0.60).

Association Between Diffusion MRI Secondary
Parameters and IQ
Secondary diffusion MRI parameters were available for a
subset of sites (ASRB, Edinburgh, Dublin, Human Brain In-
formatics, MPRC, Galway) that included 397 healthy control
participants and 467 patients with schizophrenia. Meta-
analysis, reported in Table S12 in the online supplement,
shows that radial diffusivity (RD) had the largest effect size
forbothglobal (gRD)and longassociation tracts (LA-gRD)across
the full sample(gRD:effect size=0.33,95%CI=0.13–0.52,p=0.001;
LA-gRD: effect size=0.34, 95% CI=0.08–0.0.52, p=0.01).

Standardized beta coefficients from this analysis are re-
ported in Table S13 in the online supplement.

DISCUSSION

In this study, we sought to characterize the relationship
betweenwhitemattermicrostructure and IQ and to compare
this association between patients with schizophrenia and
healthy control participants. We carried out a meta-analysis
of data sets from participating ENIGMA groups, analyzed
according to a common analysis pipeline, to assess the re-
lationship between white matter microstructure and IQ in
patients with schizophrenia and healthy participants. Our
findings indicated that global white matter microstructure
accounted for a significant amount of variation in IQ (ef-
fect size=0.27), both in patients with schizophrenia and in
healthy participants, with the size of the association ob-
served tobe comparable betweengroups.Comparable results
were obtained with either global white matter values (effect
size=0.27) or six regional association white matter tracts
(effect size=0.28) that connect frontal, parietal, and temporal
lobes andhavepreviouslybeenhypothesized tobe involved in
IQ. These findings were unequivocal, supporting the value of
meta-analysis based on harmonized pipelines and large data
sets.

The results of this ENIGMA meta-analysis consistently
showed a pattern of significant (albeit modest) associations
betweenwhitematter FA and IQ in both patients and healthy
participants. Robust evidence of association between varia-
tion in IQ and variation in white matter structural connec-
tivitywas found,with similar effect sizes observed in patients
and healthy participants. A landmark review carried out by
Deary and Caryl (24) suggested that intelligence is regulated
by a widely distributed complex neurological network. Our
study provides empirical evidence for this claim in the largest
IQ study undertaken to date, consistentwith previous studies
linking white matter microstructure to processing speed (a
cognitive variable highly correlated with IQ) (18, 22, 27).
Collectively, these results indicate that global white matter
provides a neural network to support the functional cortical
communication required for general cognitive performance.
The similar effect sizes observed in both global and long
association fiber–based measures of FA underline the nature
of this relationship as a global phenomenon rather than a
regionally specific association.

Previous studies focused mainly on individual white
matter tracts, including fronto-parietal whitematter (22, 28),
the cingulate (21, 29, 30), the uncinate fasciculus (20), the
fornix (19), and thecorpuscallosum(31).Asignificantpositive
correlation between IQ in fronto-parietal white matter (28),
the uncinate fasciculus (20), and the cingulate bundle (21, 30)
was frequently observed in schizophrenia, with negative or
no significant associations reported in healthy participants.
The heterogeneity of results between studies wasmost likely
due to small sample sizes andmethodological differences that
limitedreplicabilityof results (19–22,28–32). In this study,we
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have overcome the limitation of small sample sizes by using a
harmonized DTI processing pipeline and statistical analy-
sis on over 1,700 participants. We also concluded that our
findingswerenotdrivenbyany single site (basedon the leave-
one-out analyses for both gFAandLA-gFA) andcan therefore
be expected to generalize to independent samples. In addi-
tion, these findings did not appear to be explained by the
higher proportion of males in the total sample, as we have
shown that the association between white matter micro-
structure and IQ is not significantly different between males
and females.

TheRelationshipBetweenWhiteMatterMicrostructure
and IQ in Patients and Healthy Participants
Our results indicate that the relationship between structural
connectivity and higher cognitive function is broadly com-
parable between patient and healthy groups, with no dif-
ferences in effect sizes observed. We previously reported (6)
widespread white matter deficits in schizophrenia that
spanned 19 white matter tracts and hypothesized that in
schizophrenia these may predict variation in cognition more
strongly in patients than control subjects, as suggested by
previous small-scale studies (20–22, 28, 30). By contrast,
however, we observed similar effects between patients and
healthy participants. This finding suggests that individual
variances of low to high efficiency in transfer of information
across white matter tracts is associated with a range of lower
to higher cognitive functioning, irrespective of diagnosis.
Therefore, patients with schizophrenia occupied the lower
quadrant of the correlation matrix between white matter
microstructure and IQ.We speculate, based on these results,
that a common neurodevelopmental process and cytoarch-
itecture predicts outcomes in cognitive performance, inde-
pendent of a clinical diagnosis. However, further studies of
the genetic and neurodevelopment associations between
schizophrenia, whitematter, andmeasures of cognitive ability
will be needed to address these questions.

Patients in the ASRB data set had an average IQ score of
105. Generally, patients with schizophrenia consistently dem-
onstrate a medium-sized impairment in IQ (33), with an
8-point IQ deficit observed in the premorbid stage (33) and a
deficit of 14–21 points among those with first-episode and
chronic schizophrenia (34–36). Furthermore, lower IQ is as-
sociated with increased risk of schizophrenia (37). To de-
termine whether the ASRB patient IQ (above average norms)
was confounding any diagnostic effect, the analysis was rerun
without these data. The effect size observed for the patient
group, for both gFA and LA-gFA, did not significantly change,
supporting the hypothesis that the association between white
matter and IQ is independent of diagnosis.

Kelly et al. (6) reported that patients with schizophrenia
had significantly higher mean diffusivity and radial diffu-
sivity across the majority of white matter tracts. Higher
radial diffusivity, which underlies changes in fractional
anisotropy, is indicative of microstructural alterations.
Specifically, it provides an index of diffusion in an

orientation perpendicular to a white matter tract. Our
findings indicate both higher FA and, related to this, lower
RD are associated with higher cognitive function in both
patients and control participants. Similar effect sizes were
observed for the association between radial diffusivity and
IQ in both patients and control participants. While the
precise biological interpretation of changes in radial dif-
fusivity must be done cautiously, previous studies have
speculated that radial diffusivity is associated with de-
myelination (38). Increased radial diffusivity associated
with demyelination supports our finding that efficient global
structural connectivity facilitates higher cognitive function,
independent of diagnosis.

Strengths and Limitations
In this study, we adopted a “prospective” meta-analytic ap-
proach that analyzed the relationship between IQ and DTI
based on a well-validated and harmonized ENIGMA DTI
analysis pipeline carried out in a large sample of 1,717 partici-
pants. Doing so overcomes many of the significant limitations
of previous studies byminimizing sources of heterogeneity and
the potential for consequent false positive or negative findings.
However, future analyses could also include methods to in-
corporate harmonizedmeasures of environmental factors, such
as educational level, socioeconomic status, general health, and
lifestyle, which may have an impact on cognitive outcomes.
ENIGMA DTI pipelines incorporate tract-based spatial statis-
tics (14),which is awidely usedmethod for voxel-based analysis
of white matter tracts. Although tensor-based limitations have
been widely reported—i.e., the model does not capture all in-
formation onwhitemattermicrostructure, such asmyelination,
axonal packing density, or neuroinflammation—DTI remains
the most consistently used method in diffusion MRI analysis,
and pending a general consensus on non-tensor-based pro-
cessing methods that are devoid of potential artifacts, the
analysis carried out here is themost advanced that definitively
supports the structural underpinnings of cognitive perfor-
mance. During image preprocessing, DTI datawere corrected
for motion-induced artifacts; however, studies have shown
that some white matter tracts may be more sensitive to mi-
croscopic head movements, which may produce spurious
group differences (39). To overcome motion-induced vari-
ances, previous single-site studies have included a metric of
motion as a covariate in the analysis (39, 40). Further de-
velopment of these methods would be required for imple-
mentation in multisite analyses in large consortium-based
data sets.

We used a principal component analysis to derive com-
ponents for global and long association tract FAvalues.While
this eliminates the need for correction for multiple com-
parisons, it reduces the ability to detect a possible, albeit
unlikely, association between cognition and specific indi-
vidual white matter tracts. Previous studies used similar
principal component analyses to assess the relationship be-
tween global neural underpinnings of functional measures
(17, 41).
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While we have unequivocally shown here a relationship
between white matter and cognitive ability, further studies
are necessary to determine the associations with gray matter
measures. Although this has beenmorewidely studied, study
sample sizes have still been limited, and methodological is-
sues make it difficult to summarize the findings. The latest
ENIGMA study (Grasby et al., under review) shows a strong
overlap between the genetic influences on cortical surface
area and educational attainment. Analyses similar to that
carried out heremay help identify cortical regions associated
with cognitive deficits observed in schizophrenia. Finally,
further analysis is also required to determine whether the
associations reported here generalize to other psychiatric
disorders, although the comparability between patients and
healthy participants observed here suggests that this is likely.

CONCLUSIONS

This study provides robust evidence that cognitive ability
is associated with global structural connectivity and that more
efficient white matter microstructure is associated with higher
IQ. This association was independent of diagnosis: across the
distribution of scores onFA and IQmeasures, patients tended to
have lowerFAand lower IQ, healthyparticipants tended tohave
higherFAandhigherIQ,andtheeffect sizesof theseassociations
between FA and IQ were comparable between groups.
These findings suggest that a general association between
lower FA and lower IQ is likely, with white matter micro-
structure likely to represent a significant component in the
neural basis of IQ.
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