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Abstract 

Objective: Occurrences of early-life stress (ELS) are associated with the severity of psychotic 

symptoms and working memory (WM) deficits in patients with psychosis (PSY). This study 

investigated potential mediation roles of WM behavioural performance and Glutamate concentrations 

in prefrontal brain regions on the association between ELS and psychotic symptom severity in PSY. 

Method: Forty-seven patients with PSY (established schizophrenia, n = 30; bipolar disorder, n = 17) 

completed measures of psychotic symptom severity. In addition, data on ELS and WM performance 

was collected in both patients with PSY and healthy controls (HC; n = 41). Resting-state Glutamate 

concentrations in the bilateral dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex 

(ACC) were also assessed with Proton Magnetic Resonance Spectroscopy for both PSY and HC groups. 

T-tests, analyses of variance and regression analyses were utilised. 

Results: Participants with PSY reported significantly more ELS occurrences and showed poorer WM 

performance than HC. Furthermore, individuals with PSY displayed lower Glutamate concentrations in 

the left DLPFC than HC. Neither ELS nor WM performance were predictive of severity of psychotic 

symptoms in participants with PSY. However, we found a significant negative correlation between 

Glutamate concentrations in the left DLPFC and ELS occurrence in HC only. 

Conclusion: In individuals with PSY, the current study found no evidence that the association between 

ELS and psychotic symptoms is mediated by WM performance or prefrontal Glutamate concentrations. 

In HC, the association between ELS experience and Glutamate concentrations may indicate a 

neurometabolite effect of ELS that is independent of an illness effect in psychosis. 

 

Keywords: Psychosis, Early-life stress, Working memory, Glutamate, Left Dorsolateral Prefrontal 

Cortex 

 

Significant Outcomes  

 Our findings of reduced Glutamate concentrations in the left dorsolateral 

prefrontal cortex and poorer working memory performance in patients with 

psychosis (including both schizophrenia and bipolar disorder) provide 

evidence for illness-related changes. 

 The significant relationship between early-life stress experience and 

Glutamate concentrations in the left dorsolateral prefrontal cortex in 

healthy controls indicate preliminary evidence for general neurobiological 

effect of ELS.  

Limitations  

 The early-life stress measure used in this study does not directly ask 

participants about abusive and neglectful experiences during childhood 



 

 

 

although it is known that such experiences are highly prevalent in 

individuals with a psychotic disorder. This may account for the lack of a 

relationship between early-life stress occurrences and psychotic symptom 

severity in our findings. However, it is also known that other environmental 

risk factors are implicated in the onset and severity of psychosis. 

 

Due to the relatively small sample, our analyses were not sensitive to 

weaker associations among early-life stress occurrences, working memory 

performance, Glutamate concentrations and psychotic symptom severity. 

 

Data Availability Statement 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request.
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1) Introduction 

Psychotic disorders are debilitating conditions that are primarily characterised by positive symptoms 

(including delusions, hallucinations, and disorganized thoughts, negative symptoms (such as avolition, 

alogia or apathy) and cognitive deficits (such as social cognition and working memory impairments). 

The latter can occur prior to the diagnosis of a psychotic disorder and can worsen with illness 

progression 1,2. Cognitive deficits are widely considered to be core symptoms of schizophrenia (SZ) 3 

and bipolar disorder (BD) 4,5 and are also associated with reductions in working memory performance. 

Working memory deficits are one of the main neurocognitive impairments found in subjects with first-

episode psychosis 6,7 and in patients at the established stage 8. Deficits in working memory are important 

given the role of working memory in information retention and manipulation in order to perform 

abilities, such as speech and multi-tasking 9 and involve the recruitment of the dorsolateral prefrontal 

cortex (DLPFC) 10–12. Furthermore, working memory deficits are associated with impaired daily 

functioning in patients with a psychotic disorder 13. 

 

Epidemiological and clinical studies have also consistently reported the impact of stress-related 

environmental risk factors on the severity of psychotic symptoms in patients with SZ and BD, such as 

early-life stress (ELS) which includes physical abuse, physical neglect, emotional abuse, emotional 

neglect, sexual abuse and household dysfunction 14–25 among cannabis use 26 and urbanicity 27,28. In 

addition, recent evidence suggests that the occurrence of ELS also impacts on neurocognitive function, 

such as working memory performance in both individuals with PSY and HC 29–31 as well as brain 

activation and connectivity in HC 32,33. However, little is known about the underlying mechanism 

between the environmental risk factor of ELS and working memory function in individuals with PSY. 

 

The Glutamate Hypothesis of Schizophrenia 34 and the N-methyl-D-aspartate receptor (NMDA-R) 

hypofunction model 35 posit that aberrant Glutamate systems 36 may be implicated in the 

pathophysiology of schizophrenia and psychosis. Proton Magnetic Resonance Spectroscopy (1H-MRS) 

studies examined both the Glutamate Hypothesis of Schizophrenia and the NMDA-r hypofunction 

model by measuring resting-state Glutamate levels in prefrontal brain regions in individuals with SZ 

and BP. Such studies reported inconsistent findings of Glutamate levels in the dorsolateral prefrontal 

cortex (DLPFC) in patients with SZ 37 with studies reporting (i) increased Glutamate levels 38,39, (ii) 

decreased Glutamate levels 40 or (iii) no difference in Glutamate levels 41 in the DLPFC compared to 

healthy controls (HC). For Glutamate levels in the ACC in patients with SZ, there are further 

inconsistent findings with the majority of studies demonstrating no difference in concentrations of 

Glutamate or Glutamate-related metabolites, such as Glutamine or Glutamate and Glutamine combined 

(Glx) concentrations between chronic patients with SZ and HC 42–46. However, a small number of 

studies also reported decreased concentrations of Glutamate between patients with SZ and HC 47–49. The 
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pattern of findings in patients with BD differs from patients with SZ, where individuals with BD 

consistently showed higher Glx levels in the DLPFC and ACC when compared to HC 50,51. Focusing on 

working memory deficits, it has been proposed that altered Glutamate regulation is one of the main 

neurobiological pathways underlying working memory impairments in psychosis based on both 

preclinical and clinical evidence 52–54. Further support for the role of Glutamate during working memory 

in individuals with PSY comes from a recent study using functional 1H-MRS 55. 

 

In the last few years, emerging evidence proposes a role of stress, in particular social stress, in aberrant 

glutamatergic transmission in the PFC in rodents 56,57, which has also been in shown in HC who have 

experienced ELS 58. Importantly, it has been shown that stress, in particular chronic social stress, 

resulted in both deficits in working memory and glutamatergic dysregulation in the PFC in rodents 59–

61. However, to date no study has examined the association between ELS experience and severity of 

psychotic symptoms in individuals with PSY when considering Glutamate concentrations as a potential 

neurobiological mechanism, including working memory function 62,63. 

 

1.1) Aims of the study 

In this study, we investigated whether there is a relationship between the experience of ELS and severity 

of psychotic symptoms in PSY. In addition, we examined whether working memory performance and 

Glutamate concentrations during resting-state in the bilateral DLPFC and the ACC as measured with 

1H-MRS mediate this relationship between the ELS experience and severity of psychotic symptoms.



3 

 

2) Material and Methods 

2.1) Participants 

Forty-seven participants with psychosis (SZ = 30, BD = 17) and 41 HC were recruited for the study. 

PSY and HC were recruited from the Royal Edinburgh Hospital, associated hospitals and the Scottish 

Mental Health Research Register (http://www.smhrn.org.uk/). Diagnosis of SZ and BD was based on 

interview using the Structured Clinical Interview for DSM-IV (First et al., 2002). Inclusion criteria 

included (i) diagnosis of established SZ or BD, and (ii) no acute psychotic symptoms at the time of the 

scan. Exclusion criteria included (i) history of any major psychiatric illness other than SZ or BD, (ii) 

history of severe brain injury, (iii) history of a neurological disorder, and (iv) dependency or harmful 

use of alcohol or drugs during the last 12 months. Also, HC were excluded if they had a family history 

of SZ or BD. All participants provided written informed consent. The study was approved by the local 

Research Ethics Committee (09/MRE00/81).  

 

2.2) Measures 

2.2.1) Demographic Measures 

Participants provided information regarding their age, sex and education status. Participants were also 

asked regarding medication use (antipsychotic medication, mood stabilisers, antidepressant medication). 

Smoking status has not been recorded. 

 

2.2.2) Clinical Measures 

The Positive and Negative Syndrome Scale (PANSS; Kay et al., 1987) is a 30-item standardised clinical 

interview to rate the presence and severity of positive and negative symptoms in PSY. The measure 

consists of the following scales: Positive symptoms, negative symptoms, general symptoms and total 

score. Items were re-scored to 0 (“Absent”) to 6 (“Extreme”) for symptoms during the past week with 

higher scores indicating greater severity. Internal reliability for the three subscales of positive symptoms, 

negative symptoms and general symptoms has been reported as adequate (Chronbach alpha’s .73 to .83) 

64. Previous studies have indicated adequate validity of the PANSS 64. Symptom rating took place within 

one week of the 1H-MRS acquisition.   

 

2.2.3) Environmental Questionnaires 

The Childhood Life Events Questionnaire (CLEQ; http://bdrn.org/) is a 13-item verbally administered 

measure of ELS shared by the Bipolar Disorder Research Network (BDRN 65). All participants were 

asked if they had experienced any or all of a list of 12 adverse events prior to the age of 16 years as 

previously reported 66,67. This list includes death of a parent, death of a sibling, death of a friend, parental 

separation, parental divorce, admission to hospital, hospitalisation of parent, visible deformity, teenage 

pregnancy or fatherhood, imprisoned parent and suspension from school. Responses ranged from 0 

http://bdrn.org/
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(“No”) to 1 (“Yes”). While no questions regarding childhood abuse or neglect were asked, participants 

were given the opportunity to provide this information by the final item which is an open-ended question: 

“Are there any other significant life events you experienced as a child that are not mentioned above?” 

 

2.3) Working Memory Data 

All participants performed the verbal “2-Back” task. They were presented with a sequence of single 

capital letters. The experimental block design consisted of (i) the baseline or “0-Back” condition; (ii) 

the “1-Back” condition; and (iii) the “2-Back” condition. Full experimental details are presented in the 

Supplementary Material. 

 

2.4) Brain Acquisition and Analysis 

2.4.1) Structural MRI acquisition and analysis  

Brain scans were collected using a 3 T Siemens Verio (Erlangen, Germany) MRI scanner using a 

manufacturer-supplied 12-element matrix head coil at the Clinical Research Imaging Centre (CRIC), 

the Queen’s Medical Research Institute, Edinburgh, UK. After a sagittal localizer, T1-weighted 

magnetization-prepared rapid-acquisition gradient echo (MPRAGE) MR images were obtained using 

TR=2300 ms, TE = 2.98 ms, and TI=900 ms, (Flip angle = 9, FOV = 256mm x 256 mm) with an 

isotropic voxel resolution of 1 mm, parallel to AC-PC plane.  

 

2.4.2) Proton Magnetic Resonance Spectroscopy Data Acquisition and Analysis  

2.4.2.1) Magnetic Resonance Spectroscopy data acquisition 

We acquired MRS point-resolved selective spectroscopy (PRESS) spectra with voxel placements in the 

ACC, right and left DLPFC. The voxels were shimmed using the Siemens advance mode. We acquired 

a water unsuppressed spectra with 16 averages and a water suppressed spectra with 128 averages. The 

TE was set to 80ms and the TR was set to 3000ms. The phase cycling was set to the Siemens 16 EXOR-

cycle mode and the bandwidth was 2500Hz with over-sampling enabled. The voxels in the DLPFC 

measure 20 x 20 x 20 mm (8 cm3) and in the ACC measures 30 x 20 x 15 mm (9 cm3). 

 

This followed a standardized protocol, with navigation steps to determine the coronal slice for 

placement. Cortical feature identification was used to designate the voxel centre, followed by rotations 

of the voxel in the transverse and sagittal views to obtain the final placement. The location of the ACC 

voxel is shown in Figure 1A and the placement of the left DLPFC voxel is shown in Figure 1B. Details 

for the voxel placement are presented in the Supplemental Material and in a previous paper 68. An 

example of a spectrum acquired in the dACC in a HC (Figure 1C). 

 

INSERT Figure 1   
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2.4.2.2) Metabolite measurement 

Spectral metabolite quantification was performed in LCModel version 6.2 (http://www.s-

provencher.com/pages/lcmodel.shtml) using a gamma_press_te80_123mhz basis set provided at 

http://s-provencher-com for use with the Siemens 3T Verio scanner. LCModel obtains maximum-

likelihood estimates of metabolite concentrations and their uncertainties (Cramer-Rao lower bounds; 

CRLB). The quality of the spectra obtained and the specificity of the measurement of a given metabolite 

were evaluated using the CRLB measure of uncertainty. This is a measure of the specificity of the peak 

in the spectrum associated with a given metabolite.  Only metabolite measurements that were associated 

with a fitting error (CRLB) of <15% were included in the analysis. 

 

The raw spectra were read into the graphical user interface for LCModel and processed through LC 

Model with eddy current correction enabled and internal water reference was used to give the metabolite 

in institutional units. For each voxel the metabolite values derived from LCModel were corrected for 

voxel cerebrospinal fluid (CSF) content as per the equation: 

 

MetCI = MetI * (1 / 1 - FCSF)           [1] 

 

Where MetCI is the metabolite in institutional units and corrected for partial volume effects, MetI is the 

internal water scaled metabolite value given by LC model and FCSF is the fractional CSF occupancy of 

the voxel. The fractional CSF volume was determined from the segmentation of the T1-weighted scan 

and the voxel placement and rotation noted at scan time. The T1-weighted images were segmented into 

grey matter, white matter and CSF maps using SPM8 (Statistical Parametric Mapping; 

http://fil.ion.ucl.ac.uk/spm/). The CSF volume in each voxel was extracted using a c-script that sampled 

the SPM segmentation maps at the native space location noted for each voxel at time of scan.  

 

2.5) Statistical Analysis 

2.5.1) Demographic Data 

Frequencies, means and standard deviations were calculated for sex, age and level of education in 

Statistical Package for Social Sciences Version 25 (SPSS) 69. Smoking status was not recorded. 

 

2.5.2) Clinical and Environmental Data 

A series of t-tests were conducted to examine differences between groups on measures, such as PANSS 

total scores, PANSS positive symptoms, PANSS negative symptoms, PANSS general scores, ELS data  

and Glutamate concentrations (separately in the right DLPFC, left DLPFC and ACC). In following 

analyses, a multivariate ANOVA (MANOVA) was conducted to examine group differences in 

Glutamate concentrations in the bilateral DLPFC and ACC. Multiple linear regressions assessed 

http://s-provencher-com/
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whether ELS occurrences, WM performance or Glutamate metabolite concentrations (separately in the 

bilateral DLPFC and ACC) predicted psychotic symptom severity by introducing these predictors 

systematically across blocks. Statistical significance was set at a p value below .05. Pearson product-

moment correlations were computed to examine the relationships between ELS occurrence, WM 

behavioural performance, Glutamate metabolite concentrations and psychotic symptom severity. P 

values were adjusted for multiple comparison using the Hochberg method in R Studio 70. 

 

2.5.3) Working memory data 

Behavioural performance was calculated using the sensitivity index (d’) (Eq. [1])71. Behavioural 

performance on the 0-Back, 1-Back and 2-Back conditions between the groups was compared in SPSS 

using independent t-tests and ANOVAs. 

 

d’ = z (Hits) – z (False Alarms) 

z = statistical Z value                        [2] 

 

2.5.4) Glutamate concentrations 

Analysis of covariance (ANCOVA) was preformed to examine the hypothesised differences in 

Glutamate concentrations in each region between the PSY and HC groups. Age and sex were entered 

in as covariates for all comparisons.  
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3) Results 

3.1) Demographic, clinical and working memory data 

Demographic and clinical data are presented in Table 1. Ages ranged from 18 to 67 years (M = 39.5, 

SD = 12.99) with an average of 90 months of illness duration. Most participants (55%) completed post-

secondary education. The majority of participants who took part in the study were male (66.3%). 

Demographic and clinical data for SZ and BD subgroups are presented in the Supplemental Materials 

(STable 1). 

 

INSERT TABLE 1 

 

3.1.1) Clinical data 

3.1.1.1) Psychotic symptom severity 

PANSS severity in PSY were assessed with comparable severity (Table 1). In addition, independent t-

tests revealed a significant subgroup difference in PANSS positive symptoms (t(45) = 2.36, p = .046, d 

= 0.76), with the SZ group scoring higher than the BD group. There were no significant group 

differences in PANSS total scores (t(45) = 0.945, p = .220, d = 0.29), PANSS negative symptoms (t(45) = 

1.26, p = .160, d = 0.42), or PANSS general symptoms (t(45) = -0.38, p = .543, d = 0.66; STable1). 

 

3.1.2) Early-life stress 

The following reported experiencing no (n; HC = 15; PSY = 8), one (HC = 11; PSY = 6), two (HC = 8; 

PSY = 6), three (HC = 2; PSY = 10), or four or more (HC = 3, PSY = 11) occurrences of ELS. Regarding 

childhood trauma (i.e., abuse and/or neglect), 2.4% of HC reported such experiences, compared to 12.2% 

of PSY participants (SZ = 13.3%, BD = 11.7%). An independent t-test (PSY vs. HC) revealed a 

significant group difference in ELS scores (t(78) = 3.29, p = .001, d = 0.74) with PSY reporting greater 

occurrence (M = 2.49, SD = 1.90) than HC (M = 1.23, SD = 1.48). A one-way ANOVA (SZ vs. BD vs. 

HC) revealed a significant subgroup difference in ELS scores (F(2, 79) = 6.729, p = .002, η2 = 0.149). 

Post-hoc analyses revealed a significant group difference between the HC and the SZ groups (p = .001) 

in ELS scores, with the SZ group scoring higher (see Stable 1). There was no significant group 

difference between the BD and HC groups (p = .267) and the BD and SZ groups (p = .272) on ELS 

scores. 

 

3.1.3) Working memory performance 

To examine group differences in behavioural performance on the N-Back task, a series of t-tests were 

conducted (HC vs. PSY). There was no significant difference on the 0-Back performance (t(74) = 1.622, 

p = .109, d = .372). For both the 1-Back and 2-Back conditions, PSY performed less accurately than 

HC. Regarding 1-Back performance, there was a significant group difference (t(74) = 3.212, p = .002, d 
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= .734), with the PSY group (M = -0.60, SD = 1.87) scoring lower than the HC group (M = 0.57, SD = 

1.26). Regarding 2-Back performance, a significant group difference was also observed (t(74) = 2.60, p 

= .011, d = .594) with the PSY group (M = -0.47, SD = 1.70) performing worse than the HC group (M 

= 0.45, SD = 1.38).  

 

To examine any differences in N-Back performance between subgroups, a series of one-way ANOVAs 

(HC vs. SZ vs. BD). Regarding behavioural performance on the 0-Back task, we did not find any 

significant differences between the three groups (F(2,76) = 1.31, p = .277, η2 = .035). Regarding the 1-

Back task, a significant difference was observed (F(2,76) = 5.121, p = .008, η2 = .123). Post-hoc analyses 

revealed that the SZ group performed significantly poorer (p = .012) than the HC group. There was no 

significant difference between the SZ and BD groups (p = .970) or the BD and HC groups (p = .092). 

On the 2-Back task, a significant group difference was also found (F(2,76) = 3.357, p = .040, η2 = .084). 

Post-hoc analyses revealed that the SZ group scored significantly lower (p = .049) than the HC group. 

There were no significant differences between the SZ and BD group (p = .961) or between the BD and 

HC group (p = .228). 

 

3.2) Glutamate concentrations 

The number of participants who met the criterion of data quality are presented in Table 2. A series of 

one-way ANCOVAs (PSY vs. HC) were conducted to examine whether Glutamate concentrations in 

the three brain areas varied according to group, while controlling for age and sex. The results of the 

testing found a significant difference in Glutamate concentration in the left DLPFC between groups (F(1, 

63) = 5.742, p = .020, partial η2 = 0.084), with the PSY group reporting lower concentrations of 

Glutamate than the HC group (see Table 2). There were no significant differences between the PSY and 

HC groups with regards to Glutamate concentration in the right DLPFC (p = .324) or ACC (p = .971). 

Extension of the inclusion criteria (Glutamate standard deviation < 30%) resulted in no significant 

difference in Glutamate concentrations in the bilateral DLPFC or ACC between the PSY and HC groups 

(p > .05). These analyses were repeated for subgroups (SZ vs. BD vs. HC). No significant difference 

was found for the right or left DLPFC or ACC (see Supplemental Material).  

 

INSERT TABLE 2 

 

3.3) Correlational analyses 

Pearson’s bivariate correlations were used to identify associations between severity of clinical 

symptoms, ELS occurrences, Glutamate concentrations (right DLPFC, left DLPFC and ACC) and WM 

performance in a series of analyses. Firstly, severity of clinical symptoms and occurrence of ELS in 

PSY only was tested (Table 3). Secondly, correlations between ELS and Glutamate concentrations in 
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both HC and PSY were run separately of each of the three brain regions (right DLPFC, left DLPFC and 

ACC) (Table 4). Finally, relationships between ELS experience and WM performance were examined 

for both groups (Table 5). P values were adjusted for multiple comparisons using the Hochberg method. 

The alpha level was set at .05. 

 

INSERT TABLE 3 

 

INSERT TABLE 4 

 

INSERT TABLE 5 

 

There were no significant correlations between the occurrence of ELS and severity of psychotic 

symptoms in the PSY group (all p > .05; Table 3). Regarding Glutamate levels, a significant negative 

correlation between the occurrence of ELS and Glutamate concentration in the left DLPFC (r = -.449, 

p = .029; Table 4) was observed in the HC group only. In the PSY group, there were no significant 

correlations between the occurrence of ELS and concentrations of Glutamate in the right DLPFC, left 

DLPFC or ACC (all p > .05). We also did not observe any significant correlations between the 

occurrence of ELS and working memory performance in the HC or PSY group (all p > .05; Table 5). 

 

3.4) Predictors of severity of psychotic symptoms   

For the PSY group, occurrences of ELS, working memory performance and Glutamate concentrations 

were systematically added across blocks in four multiple linear regressions predicting severity of 

psychotic symptoms (PANSS total score, PANSS positive symptoms, PANSS negative symptoms and 

PANSS general score). This process was repeated for Glutamate concentrations in each of the three 

brain regions (right DLPFC, left DLPFC and ACC). No model was predictive of psychotic symptoms 

(all p > .05).  

 

In addition, we repeated these analyses to predict the relationship between ELS, working memory and 

psychotic symptoms for the BD and SZ groups separately. No model significantly predicted symptoms 

in the SZ group (all p > .05). In patients with BD, however, the model that included 2-Back working 

memory performance (β = -.722) significantly predicted negative symptoms (F(1,7) = 6.531, p = .043), 

explaining 44% of the variance of negative symptom severity scores. The same model (working 

memory β = -.718), significantly predicted PANSS general scores (F(1,7) = 6.370, p = .045), explaining 

43% of the variance. No other model was predictive of psychotic symptoms (all p > .05).  
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3.5) Multivariate analyses for psychotic symptom severity differences between clinical group and 

early-life stress occurrences 

To examine differences in psychotic symptom severity between both clinical groups (SZ and BD) and 

ELS experience, reported ELS experience was dichotomised into absent levels (e.g. individuals who 

reported no ELS experience; SZ = 4, BD = 4) and present levels (e.g. individuals who reported at least 

one event of ELS, SZ = 20, BD = 13). A 2 x 2 design (SZ vs. BD and Absent ELS vs. Present ELS) 

MANOVA revealed no interaction effect between the clinical groups and the occurrence of ELS (Wilks’ 

λ = .911, F(4, 30) = 1.145, p = .344, partial η2 = 0.089). While a significant main effect for clinical group 

was found (Wilks’ λ = .794, F(3, 35) = 3.021, p = .043, partial η2 = 0.206), there was no significant group 

difference in severity of clinical symptoms for PANSS total scores, PANSS positive symptoms, PANSS 

negative symptoms or PANSS general symptoms (all p > .05). There was also no main effect found for 

ELS experience (Absent vs. Present levels) (Wilks’ λ = .970, F(3, 35) = 0.355, p = .786, partial η2 = 

0.030). 
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4)  Discussion 

The main aims of this study were to examine the association between the occurrence of ELS and severity 

of psychotic symptoms in PSY. Furthermore, we studied whether Glutamate concentrations in 

prefrontal brain regions would mediate this relationship between ELS experience and psychotic 

symptom severity. 

 

One of the main findings was that patients with PSY experienced significantly higher occurrences of 

ELS than HC, which is consistent with previous research 17,72. This finding of greater prevalence of 

occurrences of ELS in PSY compared to the general population is at the basis of gaining a better 

understanding of the aetiology of psychotic symptoms following the experience of ELS 73–75. The 

elucidation of this potential relationship has significant clinical and research implications for improving 

treatment avenues, such as pharmacological treatment (based on altered Glutamate concentrations) or 

Cognitive Remediation Trainings (based on altered working memory function). In our additional 

analyses focusing on both SZ and BP, we found that SZ reported higher ELS exposure when compared 

to HC, whereas BD showed comparable levels to HC. This latter finding contrasts previous meta-

analyses, which suggested that ELS occurrences was significantly higher amongst BD compared to HC 

71,76. A possible reason for this discrepancy is the choice of ELS measure of the CLEQ in this study 

when compared to the Childhood Trauma Questionnaire (CTQ) among others 54. 

 

Contrary to our hypothesis, the occurrence of ELS was not significantly associated with the severity of 

psychotic symptoms in patients with PSY. This contrasts previous studies in which positive correlations 

between these two measures were revealed 51,63,64. One reason for this discrepancy could be the choice 

of ELS measure of the CLEQ this study. Unlike commonly used measures of childhood trauma or early-

life adversity, such as the CTQ 54 or the Adverse Childhood Experiences 77, the CLEQ does not directly 

ask participants if they have experienced abuse (e.g., physical abuse) or neglect (e.g., emotional neglect) 

but provides an open-ended question for such experiences to be reported (“Are there are any other 

significant life events you experienced as a child that are not mentioned above?”). This open question 

may have resulted in an under-reporting of abusive and neglectful experiences in this study. Support 

for this interpretation comes from a previous meta-analysis which reported that, dependent on adversity 

type, between 26% and 39% of participants with PSY reported experiencing trauma as a child 78. 

However, this figure was just 12.2% for individuals with PSY in this study. Despite the established 

association between childhood trauma and severity of psychotic symptoms 14–25,72,79, it is also known 

that other environmental risk factors, such as cannabis use, migration and urbanicity are highly 

correlated with psychosis 26,28,66. Recently, it has been suggested that several measurements for the 

assessment of ELS should be used to cover different aspects of ELS 30. 
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In the current study, ELS experiences were not significantly associated with working memory 

performance despite finding that individuals with PSY had significantly increased ELS experience and 

reduced working memory performance relative to HC. These group differences for both the low and 

high difficulty levels during working memory are consistent with  meta-analyses and systematic reviews 

repeatedly confirming this 80–82. We speculate that the lack of a significant relationship between ELS 

and working memory in our study may be due to the working memory data utilised. In other words, it 

is possible that a neurobiological measure of working memory function in the form of blood oxygenated 

level-dependent (BOLD) response of brain activity as measured with functional Magnetic Resonance 

Imaging (fMRI) may be required to reveal a potential mediation role of reduced working memory 

function on the relationship between ELS and severity of psychotic symptoms. Support for this 

interpretation comes from inconsistently reported relationships between ELS experience and working 

memory function across studies 29–31 when behavioural performance is considered. In contrast, widely 

established findings of altered BOLD responses of the DLPFC in individuals with PSY when compared 

to HC during working memory 12,83 emphasise the greater reliability to study the role of working 

memory on the severity of symptoms, while the laterality of the DLPFC underlying working memory 

function seems to be variable across studies. In addition, a recent study linking Glutamate 

concentrations as well as Glutamate + Glutamine (Glx) levels during a working memory task adds 

further support to the potential relevance of using brain function during working memory in individuals 

with psychosis 55. Emerging evidence for utilising brain activation data during working memory to 

study this association between ELS exposure and working memory also emphasises the recruitment of 

brain activation of the DLPFC in HC with the experience of childhood trauma 32,33,84,85 and rodents 

following chronic stress exposure 59–61. 

 

Focusing on the 1H-MRS data, individuals with PSY demonstrated significantly reduced Glutamate 

concentrations in the left DLPFC compared to HC. Previous research on differences in glutamatergic 

neurotransmission (e.g. Glutamate, Glx and Gln concentrations) in BD, SZ and HC has produced mixed 

findings. Studies have reported increased Glx concentrations in the left DLPFC in BD relative to HC 

86–89, but significant differences in Glx between individuals with SZ (regardless of medication status) 

and HC have not been observed 90. Meta-analytical research has reported inconsistent findings between 

studies regarding Glutamate concentrations in the DLPFC (both right and left) in patients with SZ and 

HC. Furthermore, there were no significant differences in Glutamate concentration in the right DLPFC 

or ACC in individuals with PSY compared to HC. Findings from previous studies in these areas are 

also inconsistent 37,91,92. However, a number of studies have found no evidence of group differences in 

Glutamate, Glutamine or Glx concentrations between chronic medicated patients with SZ and HC 42–46. 

A limitation of the previous research is that many studies interpret Glutamate, Gln and Glx 

concentrations interchangeably, so BD- and SZ-related increases47,93, that are specific to one of these 
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indicators (e.g., Gln or Glx) but not others may complicate the picture. Further research is required to 

better understand the roles of each of the Glutamate-related metabolites in the DLPFC and ACC in PSY. 

Finally, our novel findings of this study is that ELS occurrences were inversely associated with 

Glutamate concentrations in the left DLPFC for the HC group only. Previous studies on HC focused on 

the effect of acute stress on the PFC, with reports of both elevated Glx concentrations 94 and no change 

in Glutamate levels 95. To our knowledge, this is the first study providing preliminary evidence of a link 

between ELS exposure and altered Glutamate concentrations in the DLPFC in humans, which is 

supporting impairments of glutamatergic neurotransmission previously reported in rodents after chronic 

social stress 62,63. However, we did not observe a significant relationship between ELS experience and 

Glutamate concentrations in individuals with PSY. This observed association in HC only is comparable 

to a stronger relationship between the experience of ELS and deficits in neurocognitive function 

(including working memory) in HC than in individuals with PSY 30,33,96 . It has been suggested that such 

a finding could be due to the fact that the effect of ELS cannot be isolated from other known implicated 

factors on cognitive function and severity of psychotic symptoms in PSY, such as genetic risk factors, 

current and acute stress levels 97 , medication effects 30,31. However, given the strong link between ELS 

and increased likelihood of developing PSY and the support of aberrant glutamatergic transmission in 

the DLPFC in PSY is it also possible that the lack of significant findings in individuals with PSY was 

limited by methodological shortcomings, including sample size. 

 

Future research studying relationships between ELS, cognitive function and neurobiological markers in 

PSY and other stress-sensitive psychiatric disorders should focus on overcoming limitations of a variety 

of neurocognitive batteries and ELS measures 30,31 that are challenging to interpret. Emerging evidence 

on combining ELS, cognitive, endocrine, cytokine and neuroimaging data will lead to greater insight 

into the interrelationships and therefore aetiology of PSY. 
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 Table 1. Demographic and clinical details 

 HC PSY Test p 

     

N 41 47   

Age Mean (SD) 38.29 

(14.44) 

40.62 

(11.63) 

t .406 

Sex (M:F) 23:18 33:14 χ 2 .170 

Education (1:2:3) † 10:2:24 8:7:24 χ 2 .112 

PANSS Total b Mean 

(SD) 

- 23.28 

(17.87) 

- - 

PANSS Positive ‡ 

Mean (SD) 

- 5.30 

(5.00) 

- - 

PANSS Negative ‡ 

Mean (SD) 

- 6.38 

(7.11) 

- - 

PANSS General ‡ 

Mean (SD) 

- 11.60 

(8.60) 

- - 

CLEQ § Mean (SD) 1.23 

(1.48) 

2.49 

(1.90) 

t .001* 

CLEQ, Childhood Life Events Questionnaire; HC, Healthy Controls; PANSS, Positive and Negative 

Symptom Scale. 

† 0, Compulsory; 1, More than compulsory; 2, Post-Secondary 
‡ Rescaled total PANSS scores 
§ Rescaled CLEQ scores 

* p < .001 
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Table 2. Glutamate concentrations in institutional units (IU) ‡ 

 HC PSY Test p  

R DLPFC 8.64 

(2.11) 

n = 33 

8.04 

(1.46) 

n = 29 

F .324 

L DLPFC 8.20 

(1.36) 

n = 34 

7.41 

(1.37) 

n = 33 

 F .020* 

ACC 7.79 

(1.71) 

n = 28 

7.17 

(1.87) 

n =35 

F .971 

ACC, Anterior Cingulate Cortex; HC, Healthy Controls; L DLPFC, Left Dorsolateral Prefrontal Cortex; 

PSY, individuals with psychosis; R DLPFC, Right Dorsolateral Prefrontal Cortex.  

* p < .05 
† Participants with Glutamate concentration standard deviation exceeding 15% were excluded from 

this table. 
‡ Age and sex were entered as covariates  
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Table 3. Pearson correlation coefficients for severity of clinical symptoms and occurrence of early-life 

stress for individuals with psychosis 

 

 PSY 

N 41 

  CLEQ Scale 

  r p 

PANSS Scale    

Total  .009 .996 

Positive Symptoms  .011 .996 

Negative Symptoms  .052 .996 

General Symptoms  -.030 .996 

 

PANSS, Positive and Negative Symptom Scale; PSY, Individuals with psychosis 
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Table 4. Pearson correlation coefficients for Glutamate concentrations and occurrence of early-life 

stress for healthy controls and individuals with psychosis 

Brain Region  HC PSY 

R DLPFC r -.088 -.045 

p .703 .827 

n 30 26 

L DLPFC r -.449 .163 

p .029* .577 

n 31 31 

ACC r .131 .306 

p .514 .089 

n 27 32 

ACC, Anterior Cingulate Cortex; HC, healthy controls; PSY individuals with psychosis; L DLPFC, 

Left Dorsolateral Prefrontal Cortex; R DLPFC, Right Dorsolateral Prefrontal Cortex 
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Table 5. Pearson correlation coefficients for behavioural performance during working memory and 

occurrence of early-life stress for healthy controls and individuals with psychosis 

 

 

 

 

 

 

 

 

 

 

 

HC, Healthy Controls; PSY; Individuals with psychosis 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 HC PSY 

N 37 32 

N-Back r p r p 

0-Back -.343 .114 .025 .891 

1-Back -.050 .888 -.052 .888 

2-Back -.052 .921 .122 .921 
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Figure 1. 

 

 
 

 
 

 
 


